Skip to main content

New trends in computational structure prediction of ligand-protein complexes for receptor-based drug design

  • Chapter
Computer Simulation of Biomolecular Systems

Part of the book series: Computer Simulations of Biomolecular Systems ((CSBS,volume 3))

Abstract

A number of challenging computational problems arise in the field of structure-based drug design, including the estimation of ligand binding affinity and the de novo design of novel ligands. An important step toward solutions of these problems is the consistent and rapid prediction of the thermodynamically most favorable structure of a ligand—protein complex from the three-dimensional structures of its unbound ligand and protein components. This fundamental problem in molecular recognition is commonly known as the docking problem [1–3]. To solve this problem, two distinct conditions must be satisfied. The first is a thermodynamic requirement: the energy function used to describe ligand—protein binding must have the crystal structure of ligand—protein complexes as its global energy minimum. The second is a kinetic requirement: it must be possible to locate consistently and rapidly the global energy minimum on the ligand—protein binding energy landscape. While the first condition is necessary for successful structure prediction, it is by no means sufficient. Without kinetic accessibility, the global minimum cannot be reached during docking simulations, and computational structure prediction will fail. Here we review approaches to address both the kinetic and thermodynamic aspects of the docking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wodak, S.J. and Janin, J., J. Mol. Biol., 124(1978)323.

    Google Scholar 

  2. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161(1982)269.

    Google Scholar 

  3. Cherfils, J. and Janin, J., Curr. Opin. Struct. Biol., 3(1993)265.

    Google Scholar 

  4. Shoichet, B.K. and Kuntz, I.D., J. Mol. Biol., 221(1991)327.

    Google Scholar 

  5. Wang, H.J., J. Comput. Chem., 12(1991)746.

    Google Scholar 

  6. Jiang, F. and Kim, S.H., J. Mol. Biol., 219(1991)79.

    Google Scholar 

  7. Desjarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.

    Google Scholar 

  8. Desjarlais, R.L. and Dixon, J.S., J. Comput.-Aided Mol. Design, 8(1994)231.

    Google Scholar 

  9. Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6(1993)723.

    Google Scholar 

  10. Walls, P.H. and Sternberg, M.J.E., J. Mol. Biol., 228(1992)277.

    Google Scholar 

  11. Jackson, R.M. and Sternberg, M.J.E., J. Mol. Biol., 250(1995)258.

    Google Scholar 

  12. Stoddard, B.L. and Koshland, D.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 1146.

    Google Scholar 

  13. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 2195.

    Google Scholar 

  14. Fisher, D., Lin, S.L., Wolfson, H.J. and Nussinov, R., J. Mol. Biol., 248(1995)459.

    Google Scholar 

  15. Vakser, I.A. and Aflalo, C., Proteins Struct. Funct. Genet., 20(1994)320.

    Google Scholar 

  16. Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8(1990)195.

    Google Scholar 

  17. Yue, S.Y., Proteins, 4 (1990) 177.

    CAS  Google Scholar 

  18. Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13(1992)223.

    Google Scholar 

  19. Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13(1992)206.

    Google Scholar 

  20. Totrov, M. and Abagyan, R., Nat. Struct. Biol., 1(1994)259.

    Google Scholar 

  21. DiNola, A., Roccatano, D. and Berendsen, H.J.C., Proteins Struct. Funct. Genet., 19(1994)174.

    Google Scholar 

  22. Zacharias, M., Luty, B.A., Davis, M.E. and McCammon, J.A., J. Mol. Biol., 238 (1994)455.

    Google Scholar 

  23. Leach, A.R., J. Mol. Biol., 235(1994)345.

    Google Scholar 

  24. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5(1984)24.P.A. Repo et al.

    Google Scholar 

  25. Levinthal, C., In DeBrunner, P., Tsibris, J. and Munck, E. (Eds.) Mossbauer Spectroscopy in Biological Systems, Proceedings of a meeting held at Allerton House, Monticello, Urbana, IL, University of Illinois Press, Champaign, IL, 1969, pp. 22–24.

    Google Scholar 

  26. Bryngelson, J.D. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 84(1987)7524.

    Google Scholar 

  27. Goldstein, R.A., Luthey-Schulten, Z.A. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 89(1992)9029.

    Google Scholar 

  28. Shakhnovich, E.I. and Gutin, A.M., Proc. Natl. Acad. Sci. USA, 90(1993)7195.

    Google Scholar 

  29. Sali, A., Shakhnovich, E.I. and Karplus, M., J. Mol. Biol., 235 (1994) 1614.

    Google Scholar 

  30. Chan, H.S. and Dill, K.A., J. Chem. Phys., 100(1994)9238.

    Google Scholar 

  31. Leopold, P.E., Montai, M. and Onuchic, J.N., Proc. Natl. Acad. Sci. USA, 89(1992)8721.

    Google Scholar 

  32. Socci, N.D. and Onuchic, J.N., J. Chem. Phys., 101 (1994) 1519.

    Google Scholar 

  33. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. and Wolynes, P.G., Proteins Struct. Funct. Genet., 21(1995)167.

    Google Scholar 

  34. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. and Chan, H.S., Protein Sci., 4(1995)561.

    Google Scholar 

  35. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  36. Xiao, Y.L. and Williams, D.E., J. Phys. Chem., 98(1994)7191.

    Google Scholar 

  37. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9(1995)113.

    Google Scholar 

  38. Judson, R.S., Tan, Y.T., Mori, E., Melius, C., Jaeger, E.P., Treasurywala, A.M. and Mathiowetz, A., J. Comput. Chem., 16 (1995) 1405.

    Google Scholar 

  39. Clark, K.P. and Ajay, J. Comput. Chem., 16 (1995) 1210.

    Google Scholar 

  40. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245(1995)43.

    Google Scholar 

  41. Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Proteins Struct. Funct. Genet., 25(1996)342.

    Google Scholar 

  42. McGarrah, D.B. and Judson, R.S., J. Comput. Chem., 14 (1993) 1385.

    Google Scholar 

  43. Judson, R.S., Jaeger, E.P., Treasurywala, A.M. and Peterson, M.L., J. Comput. Chem., 14 (1993) 1407.

    Google Scholar 

  44. Unger, R. and Moult, J., J. Mol. Biol., 231(1993)75.

    Google Scholar 

  45. Sun, S., Protein Sci., 2(1993)762.

    Google Scholar 

  46. Dandekar, T. and Argos, P., Protein Eng., 5(1992)637.

    Google Scholar 

  47. Dandekar, T. and Argos, P., J. Mol. Biol., 236(1994)844.

    Google Scholar 

  48. Fogel, D.B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.

    Google Scholar 

  49. Bowie, J.U. and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 91(1994)4436.

    Google Scholar 

  50. Gehlhaar, D.K., Verkhivker, G., Rejto, P.A., Fogel, D.B., Fogel, L.J. and Freer, S.T., In McDonnell, J.R., Reynolds, R.G. and Fogel, D.B. (Eds.) Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press, Cambridge, MA, 1995, pp. 615–627.

    Google Scholar 

  51. Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2(1995)317.

    Google Scholar 

  52. Verkhivker, G.M. and Rejto, P.A., Proc. Natl. Acad. Sci. USA, 93(1996)60.

    Google Scholar 

  53. Schwefel, H.-P., Numerical Optimization of Computer Models, Wiley, Chichester, 1981.

    Google Scholar 

  54. Standard deviations of the Gaussian mutations S for each variable were generatedwhere N(0,1) represents a zero-mean, unit variance Gaussian random number, and n is the number of variables in the optimization. Ni(0,1) indicates that a different random numberchosen for each component of the individual. The learning rate T influences the movement of the individual with respect to the parent, while the learning rate t influences- variations between components of the individual. This formula was obtained from Ref. 53.

    Google Scholar 

  55. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  56. Yue, K. and Dill, K.A., Protein Sci., 5(1996)254.

    Google Scholar 

  57. Elofsson, A., Le Grand, S.M. and Eisenberg, D., Proteins Struct. Funct. Genet., 23(1995)73.

    Google Scholar 

  58. Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C. and Freer, S.T., J. Med. Chem., 38(1995)466.

    Google Scholar 

  59. Knegtel, R.M.A., Antoon, J., Rullmann, C., Boelens, R. and Kaptein, R., J. Mol. Biol., 235(1994)318.

    Google Scholar 

  60. Mayo, S.L., Olafson, B.D. and Goddard III, W.A., J. Phys. Chem., 94(1990)8897.

    Google Scholar 

  61. Wlodawer, A. and Erickson, J.W., Annu. Rev. Biochem., 62(1993)543.

    Google Scholar 

  62. Appelt, K., Perspect. Drug Discov. Design, 1(1993)23.

    Google Scholar 

  63. Reich, S.H., Melnick, M., Davies II, J.F., Appelt, K., Lewis, K.K., Fuhry, M.A., Pino, M., Trippe, A.J., Nguyen, D., Dawson, H., Wu, B.-W., Musick, L., Kosa, M., Kahil, D., Webber, S., Gehlhaar, D.K., Andrada, D. and Shetty, B., Proc. Natl. Acad. Sci. USA, 92(1995)3298.

    Google Scholar 

  64. Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87(1990)8805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rejto, P.A., Verkhivker, G.M., Gehlhaar, D.K., Freer, S.T. (1997). New trends in computational structure prediction of ligand-protein complexes for receptor-based drug design. In: van Gunsteren, W.F., Weiner, P.K., Wilkinson, A.J. (eds) Computer Simulation of Biomolecular Systems. Computer Simulations of Biomolecular Systems, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1120-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1120-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8528-3

  • Online ISBN: 978-94-017-1120-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics