The Art and Science of Computing in Large Groups

  • S. A. Linton
Part of the Mathematics and Its Applications book series (MAIA, volume 325)


This paper describes general approaches and some specific techniques that enable researchers to perform computations in groups too large for general-purpose software and algorithms.


Conjugacy Class Maximal Subgroup Structure Constant Permutation Group Dihedral Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Benson, The Simple Group J4, PhD thesis, Cambridge, 1981.Google Scholar
  2. [2]
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups, Oxford: Clarendon, 1985.zbMATHGoogle Scholar
  3. [3]
    P. B. Kleidman and R. A. Wilson, The Maximal Subgroups of J4, Proc. London Math. Soc. (3) 56 (1988), 484–510.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    J. S. Leon, On an Algorithm for Finding a Base and Strong Generating Set for a Group Given be Generating Permutations, Math. Comp. 35 (1980), 941–974.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    J. S. Leon, Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms, J. Symbolic Computation, 12 (1991), 533–583MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    S. A. Linton, The Maximal Subgroups of the Thompson Group, J. London Math. Soc. (2) 39 (1989) 79–88.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. A. Linton and R. A. Wilson, The Maximal Subgroups of the Fischer Groups Fi’24 and Fi24, Proc. London Math. Soc. (3), 63 (1991), 113–164.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. A. Linton, The Maximal Subgroups of the Sporadic Groups Th, Fi24 and Fi’ 24 and Other Topics, PhD thesis, Cambridge, 1989.Google Scholar
  9. [91.
    J. Neuböser, H. Pahlings and W. Plesken, CAS; Design and Use of a System for the Handling of Characters of Finite Groups, in “Computational Group Theory” ed. M. Atkinson, 195–248, New York: Academic Press, 1984.Google Scholar
  10. [10]
    M. Schönert et al, GAP — Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH-Aachen, 1992.Google Scholar
  11. [11]
    Charles C. Sims, How to Construct a Baby Monster, in: M. J. Collins (ed.), Finite Simple Groups II, New York: Academic Press 1980, 339–345.Google Scholar
  12. [12]
    R. A. Wilson, A New Construction of The Baby Monster and its applications, Bull. London Math. Soc., 25 (1993), 431–437.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    R. A. Wilson, Some New Subgroups of the Baby Monster, Bull. London Math. Soc. 25 (1993), 23–28.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    R. A. Wilson, The Symmetric Genus of the Baby Monster, Quart. J. Math. (Oxford) 44 (1993), 513–516.zbMATHCrossRefGoogle Scholar
  15. [15]
    R. A. Wilson, More on Maximal Subgroups of the Baby Monster, Archiv der Mathematik 61 (1993) 497–507.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    R. A. Wilson, The Action of a Maximal Parabolic Subgroup on the Transpositions of the Baby Monster, Proc. Edinburgh Math. Soc. 37 (1993), 185–189.Google Scholar
  17. [17]
    R. A. Wilson, Maximal Subgroups of Sporadic Simple Groups, in: C. M. Campbell and E. F. Robertson (eds), Proceedings of Groups — St. Andrews, 1985, London Math. Soc. Lecture Notes Series 121, Cambridge: Cambridge University Press, 1986, 352–258.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • S. A. Linton
    • 1
  1. 1.School of Mathematical and Computational SciencesUniversity of St. AndrewsSt. Andrews, FifeScotland

Personalised recommendations