Advertisement

Computing Automorphism Groups of p-Groups

  • E. A. O’Brien
Part of the Mathematics and Its Applications book series (MAIA, volume 325)

Abstract

We describe an algorithm to compute the automorphism group of a finite p-group. A description of the automorphism group is built up by working down successive terms of the lower exponent-p central series of the group. The algorithm is a significant improvement over existing techniques. An implementation of the algorithm is publicly available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wieb Bosma and John Cannon, Handbook of Magma functions. Department of Pure Mathematics, Sydney University, 1993.Google Scholar
  2. [2]
    John J. Cannon, An Introduction to the Group Theory Language, Cayley, in: M. D. Atkinson (ed.), Computational Group Theory, (Durham, 1982), London: Academic Press, 1984, pp. 145–183.Google Scholar
  3. [3]
    V. Felsch & J. Neuböser, Über ein Programm zur Berechnung der Automorphismengruppe einer endlichen Gruppe, Numer. Math. 11 1968, 277–292.MathSciNetzbMATHGoogle Scholar
  4. [4]
    V. Felsch & J. Neuböser, On a programme for the determination the automorphism group of a finite group, in: Computational Problems in Abstract Algebra (Oxford 1967), pp. 59–60. Oxford: Pergamon Press, 1970.Google Scholar
  5. [5]
    L. Gerhards & E. Altmann, A computational method for determining the automorphism group of a finite solvable group, in: Computational Problems in Abstract Algebra (Oxford 1967), pp. 61–74. Oxford: Pergamon Press, 1970.Google Scholar
  6. [6]
    M. F. Newman, Determination of groups of prime-power order, in: Group Theory (Canberra, 1975 ), Lecture Notes in Math. 573, Berlin: Springer-Verlag, pp. 73–84.Google Scholar
  7. [7]
    E. A. O’Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), 677698.Google Scholar
  8. [8]
    E. A. O’Brien, Isomorphism testing for p-groups,J. Symbolic Comput. 17 (1994), 133147.Google Scholar
  9. [9]
    Heinrich Robertz, Eine Methode zur Berechnung der Automorphismengruppe einer endlichen Gruppe. Diplomarbeit, RWTH Aachen, 1976.Google Scholar
  10. [10]
    Martin Schönert et al.,GAP — Groups, Algorithms and Programming. Lehrstuhl D. für Mathematik, RWTH, Aachen, 1993.Google Scholar
  11. [11]
    Martin Wursthorn, Isomorphisms of modular group algebras: An algorithm and its application to groups of order 2 6,J. Symbolic Comput. 15 (1993), 211–227.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • E. A. O’Brien
    • 1
  1. 1.School of Mathematical SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations