Advertisement

Computing Finite Soluble Quotients

  • Alice C. Niemeyer
Part of the Mathematics and Its Applications book series (MAIA, volume 325)

Abstract

A finite soluble quotient algorithm which computes power conjugate presentations for finite soluble quotients of finitely presented groups is described. A version of this algorithm has been implemented in C and is available as the ANU Soluble Quotient Program.

Keywords

Position Series Group Element Basic Step Soluble Group Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Baumslag, C. F. Miller III, F. B. Cannonito, Computable algebra and group embed-dings, J. Algebra, 69, (1981) 186–212.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    G. Baumslag, C. F. Miller III, F. B. Cannonito Some recognizable properties of solvable groups, Math. Z. 178, (1981) 289–295.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. J. Cannon, An Introduction to the Group Theory Language, Cayley, in: M. D. Atkinson (ed.), Computational Group Theory, (Durham, 1982), London: Academic Press, 1984, pp. 145–183.Google Scholar
  4. [4]
    George Havas and M. F. Newman, Application of computers to questions like those of Burnside, in: Burnside Groups, Lecture Notes in Math. 806, (Bielefeld, 1977), Berlin: Springer—Verlag, 1980, pp. 211–230.Google Scholar
  5. [5]
    C. R. Leedham-Green, A Soluble Group Algorithm, in: M. D. Atkinson (ed.), Computational Group Theory, (Durham, 1982), London: Academic Press, 1984, pp. 85–101.Google Scholar
  6. [6]
    C. R. Leedham-Green and L. H. Soicher, Collection from the left and other strategies, J. Symbolic Comput. 9 (1990), 665–675.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. A. Linton, Constructing Matrix Representations of Finitely Presented Groups, J. Symbolic Comput. 12 4 and 5 (1991), 427–438.Google Scholar
  8. [8]
    S. A. Linton, On Vector Enumeration,Linear Algebra and Applications 192 (1993), 235248.Google Scholar
  9. [9]
    Werner Nickel, A Nilpotent Quotient Algorithm,in preparation.Google Scholar
  10. [10]
    Alice C. Niemeyer, A finite soluble quotient algorithm,to appear in J. Symbolic Comput.Google Scholar
  11. [11]
    W. Plesken, Towards a Soluble Quotient Algorithm, J. Symbolic Comput. 4 (1987), 111–122.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Martin Schönert et al., GAP — Groups, Algorithms and Programming, version 3 release 4. RWTH, Aachen: Lehrstuhl D für Mathematik, 1993.Google Scholar
  13. [13]
    Charles C. Sims, Implementing the Baumslag—Cannonito—Miller Polycyclic Quotient Algorithm, J. Symbolic Comput. 9 5and6 (1990), 707–723.Google Scholar
  14. [14]
    Charles C. Sims, Computing with finitely presented groups, Cambridge: Cambridge University Press, 1994.Google Scholar
  15. [15]
    J. W. Wamsley, Computing soluble groups, in: A. Dold and B. Eckmann (eds.), Group Theory (Canberra 1975), Lecture Notes in Math. 573, Berlin: Springer—Verlag, 1977, pp. 118–125.Google Scholar
  16. [16]
    Alexander Wegner, The Construction of Finite Soluble Factor Groups of Finitely Presented Groups and its Application, PhD thesis, St. Andrews, 1992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Alice C. Niemeyer
    • 1
  1. 1.Department of MathematicsUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations