The Minimal Faithful Degree of a Finite Commutative Inverse Semigroup

  • S. Byleveld
  • D. Easdown
Part of the Mathematics and Its Applications book series (MAIA, volume 325)


We find the least size of any set by which a given finite commutative inverse semigroup may be represented using partial one-one mappings of the set, and describe the representation. The method is algorithmic and relies on established results from the theory of semigroups and elementary facts about abelian groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. H. Clifford and G. B. Preston, The algebraic theory of semigroups Providence: Amer. Math. Soc., 1961 (vol. 1) and 1967 (vol. 2).Google Scholar
  2. [2]
    D. Easdown, Efficient representations of semigroups, in: Proceedings of the International Symposium on Regular Semigroups and Applications, University of Kerala, India, 1986.Google Scholar
  3. [3]
    D. Easdown, The minimal faithful degree of a semilattice of groups, J. Austral. Math. Soc. Ser. A 45 (1988), 341–350.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. Easdown and C. E. Praeger, On minimal faithful permutation representations of finite groups, Bull. Austral. Math. Soc. 38 (1988), 207–220.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    J. M. Howie, An introduction to semigroup theory, London Math. Soc. Monographs 7, London: Academic Press, 1976.Google Scholar
  6. [6]
    D. L. Johnson, Minimal permutation representations of finite groups, Amer. J. Math. 93 (1971), 857–866.zbMATHCrossRefGoogle Scholar
  7. [7]
    G. I. Karpilovsky, The least degree of a faithful representation of abelian groups, Vestnik Khar’kov. Gos. Univ. 53 (1970), 107–115.Google Scholar
  8. [8]
    Mario Petrich, Inverse semigroups, Pure and Applied Mathematics, John Wiley & Sons, 1984.zbMATHGoogle Scholar
  9. [9]
    B. M. Schein, The minimal degree of a finite inverse semigroup, Trans. Amer. Math. Soc. 333 2 (1992), 877–888.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    L. N. Shevrin, The Sverdlovsk tetrad, Semigroup Forum 4 (1972), 274–280.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • S. Byleveld
    • 1
  • D. Easdown
    • 2
  1. 1.Baulkham HillsAustralia
  2. 2.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations