Series Expansions of Algebraic Functions

  • Deryn Griffiths
Part of the Mathematics and Its Applications book series (MAIA, volume 325)


Algebraic functions over Q(X) may indeed be expressed as Puiseux series. We examine an algorithm for the development of the series expansion for algebraic functions. From the algorithm we show why the series developed over fields of finite characteristic will not necessarily be Puiseux.

The series y = 1 + X 1/2 + X 3/4 + X 7/8 + ... satisfies y 2 + Xy + 1+ X = 0 over F 2. The shape of such series, which satisfy algebraic functions but which are not Puiseux series, is explored.


Power Series Series Expansion Dirichlet Series Fractional Power Algebraic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Chevalley, Introduction to the theory of algebraic functions of one variable, Amer. Math. Soc. Surveys 6, New York, 1951.Google Scholar
  2. [2]
    B. Dwork, Puiseux expansions,Group d’étude d’analyse ultramétrique (Amice, Christol, Robba) Inst. Henri Poincaré Paris 1982/83 n°14.Google Scholar
  3. [3]
    B. Dwork and P. Robba, On natural radii of p-adic convergence, Trans. Amer. Math. Soc. 256 (1979), 199–213.MathSciNetzbMATHGoogle Scholar
  4. [4]
    F. G. M. Eisenstein, Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen, Preuss. Akad. der Wissensch. Berlin (1852), 441–443.Google Scholar
  5. [5]
    V. A. Puiseux, Recherches sur les fonctions algébriques, Journal de Mathématiques pures et appliquées 15 (1850), 365–480.Google Scholar
  6. [6]
    J. F. Ritt, Algebraic combinations of exponentials, Trans. Amer. Math. Soc. 31 (1929), 654–679.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    R. Walker, Algebraic curves, Princeton: Princeton University Press, 1950.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Deryn Griffiths
    • 1
  1. 1.School of Mathematics & StatisticsUniversity of SydneyAustralia

Personalised recommendations