A Density Conjecture for the Negative Pell Equation

  • Peter Stevenhagen
Part of the Mathematics and Its Applications book series (MAIA, volume 325)


We derive a conjectural density for the number of integers D up to X for which the negative Pell equation x2D y 2 = −1 is solvable.


Prime Divisor Residue Class Fundamental Unit Continue Fraction Expansion Natural Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. D. Beach and H. C. Williams, A numerical investigation of the Diophantine equation x2dy 2 = −1, in: Proc. 3rd Southeastern Conf. on Combinatorics, Graph Theory and Computing, 1972, pp. 37–52.Google Scholar
  2. [2]
    W. Bosma, P. Stevenhagen, Density computations for real quadratic units, Universiteit van Amsterdam mathematical preprint series 94–20, 1994.Google Scholar
  3. [3]
    W. Bosma, R. Stevenhagen, On the computation of quadratic 2-class groups, Universiteit van Amsterdam mathematical preprint series 95–4, 1995.Google Scholar
  4. [4]
    L. E. Dickson, History of the theory of numbers, vol. II, Carnegie Institute of Washington, 1920; New York: Chelsea reprint, 1971.Google Scholar
  5. [5]
    R. G. L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen, Abh. K. Preuss. Akad. d. Wiss. von 1834, 649–664. Also: Ges. Werke Band I, Berlin, 1889, pp. 219–236.Google Scholar
  6. [6]
    L. Euler, De usu novi algorithmi in problemate Pelliano solvendo, Novi comm. acad. sci. Petropolitanae 11, 1765, pp. 28–66. Reprinted in: Commentationes Arithmeticae vol. II, Opera Omnia series prima vol. III, 73–111.Google Scholar
  7. [7]
    R. de Fermat, OEuvres, tome deuxieme, correspondance, ed. by R. Tannery and C. Henry, Paris: Gauthier—Villars et fils, 1894.Google Scholar
  8. [8]
    C. U. Jensen, Über eine Klasse nicht-Pellscher Gleichungen, J. reine angew. Math. 209 (1962), 36–38.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J. C. Lagarias, On the computational complexity of determining the solvability or un-solvability of the equation X 2 — Dy 2 = −1, Trans. Amer. Math. Soc. 260 (2) (1980), 485–508.Google Scholar
  10. [10]
    T. Nagell, Über die Lösbarkeit der Gleichung x2 — Dy2 = −1, Arkiv för Mat., Astr., o. Fysik 23B /6 (1932), 1–5.Google Scholar
  11. [11]
    L. Rédei, Über die Pellsche Gleichung t2 — du2 = −1, J. reine angew. Math. 173 (1935), 193–221.Google Scholar
  12. [12]
    L. Rédei, Über einige Mittelwertfragen im quadratischen Zahlkörper, J. rei ie angew. Math. 174 (1936), 131–148.Google Scholar
  13. [13]
    G. J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II, J. reine angew. Math. 217 (1965), 200–216.MathSciNetzbMATHGoogle Scholar
  14. [14]
    H. M. Stark, An introduction to number theory, Cambridge: MIT Press, 1970.zbMATHGoogle Scholar
  15. [15]
    R. Stevenhagen, The number of real quadratic fields having units of negative norm, Exp. Math. 2 (2) (1993), 121–136.CrossRefGoogle Scholar
  16. [16]
    M. von Thielmann, Zur Pellschen Gleichung,Math. Ann. 95 (1926), 635–640.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Peter Stevenhagen
    • 1
  1. 1.Faculteit Wiskunde en InformaticaUniversiteit van AmsterdamAmsterdamNetherlands

Personalised recommendations