Skip to main content
  • 89 Accesses

Abstract

Magnetic fields due to permanent magnetization of planetary crusts and interiors have been clearly detected only for the Earth and Moon. However, they are likely to be a ubiquitous property of silicate and partially silicate objects in the solar system. An indication that this is true is the recent indirect evidence from the Galileo flybys that the asteroids Gaspra and Ida have intrinsic magnetic fields. Lunar paleomagnetism differs substantially from terrestrial paleomagnetism in part because the dominant ferromagnetic carriers are metallic Fe-Ni grains rather than iron oxides such as magnetite. The distribution of metallic iron remanence carriers on the Moon is influenced strongly by impact processes. In addition, large-scale lunar impacts may have produced transient magnetic fields capable of imparting magnetization with or without a former core dynamo An unresolved issue of lunar paleomagnetism is the origin of swirl-like albedo markings associated with the strongest magnetic anomalies detected from orbit. The interpretation of solar wind magnetic field perturbations during the Gaspra and Ida flybys as due to intrinsic asteroidal magnetic fields has been supported by detailed magnetohydrodynamic simulations. The inferred magnetization limits for Gaspra are consistent with a wide variety of meteorite types and do not allow firm constraints to be imposed on Gaspra’s bulk composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cisowski, S. M., Collinson, D. W., Runcorn, S. K., Stephenson, A., and Fuller, M. (1983) A review of lunar paleointensity data and implications for the origin of lunar paleomagnetism, Proc. Lunar Planet. Sci. Conf. 13th, J. Geophys. Res. 88, Suppl. A691 - A704.

    Google Scholar 

  • Cisowski, S.M. and Fuller M. (1986) Lunar paleointensities via the IRMs normalization method and the early magnetic history of the moon, in W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, Lunar and Planetary Institute, Houston, pp. 411–424.

    Google Scholar 

  • Coleman, P. J., Jr., Schubert, G., Russell, C. T., and Sharp, L. R. (1972) Satellite measurements of the Moon’s magnetic field: A preliminary report, The Moon 4, 419–429.

    Article  ADS  Google Scholar 

  • Connerney, J. E. P. and Ness, N. F. (1988) Mercury’s magnetic field and interior, in F. Vilas, C. R. Chapman, and M. S. Matthews (eds.), Mercury, pp. 494–513.

    Google Scholar 

  • Crawford, D. and Schultz, P. (1988) Laboratory observations of impact-generated magnetic fields, Nature 336, pp. 50–52.

    Article  ADS  Google Scholar 

  • Crawford, D. and Schultz, P. (1991) Laboratory investigations of impact-generated plasma, J. Geophys. Res. 96, 18807–18819.

    Article  ADS  Google Scholar 

  • Dyal, P., Parkin, C. W., and Daily, W. D. (1974) Magnetism and the interior of the Moon, Rev. Geophys. Space Phys. 12, 568–591.

    Article  ADS  Google Scholar 

  • Fuller, M. (1974) Lunar magnetism, Rev. Geophys. Space Phys. 12, 23–70.

    Article  ADS  Google Scholar 

  • Fuller, M. and Cisowski, S. (1987) Lunar Paleomagnetism, in J. A. Jacobs (ed.), Geomagnetism, Academic Press, London, pp. 307–456.

    Google Scholar 

  • Hahn, A. G. (1971) Types of magnetic anomalies measured on land and general aspects of their geological meaning, in A. J. Zmuda (ed.), World Magnetic Survey 1957–1969, IUGG, Paris, pp. 134–142.

    Google Scholar 

  • Hide, R. (1972) Comments on the moon’s magnetism, The Moon 4, 39.

    Article  ADS  Google Scholar 

  • Hood, L. L. (1992) Lunar magnetic fields: Implications for utilization and resource extraction, J. Geophys. Res. 97, 18275–18284.

    Article  ADS  Google Scholar 

  • Hood, L.L., Coleman, P.J. Jr., and Wilhelms, D.E. (1979) The Moon: Sources of the crustal magnetic anomalies, Science 204, 53–57.

    Article  ADS  Google Scholar 

  • Hood, L. L. and Huang, Z. (1991) Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations, J. Geophys. Res. 96, 9837–9846.

    Article  ADS  Google Scholar 

  • Hood, L. L. and Jones, J. (1987) Geophysical constraints on lunar bulk composition and structure: A reassessment, J. Geophys. Res. 92, supplement, E396 - E410.

    Google Scholar 

  • Hood, L. L., Russell, C. T., and Coleman, P. J., Jr. (1981) Contour maps of lunar remanent magnetic fields, J. Geophys. Res. 86, 1055–1069.

    Article  ADS  Google Scholar 

  • Hood, L.L. and Schubert G. (1980) Lunar magnetic anomalies and surface optical properties, Science 208, 49–51.

    Article  ADS  Google Scholar 

  • Hood, L.L. and Vickery A. (1984) Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism, Proc. Lunar Planet. Sci. Conf. 15th, in J. Geophys. Res. 89, C211 - C223.

    Google Scholar 

  • Hood, L. L. and Williams, C. R. (1989) The lunar swirls: Distribution and possible origins, Proc. Lunar Planet. Sci. Conf. 19th, Lunar and Planetary Institute, Houston, pp. 99–113.

    Google Scholar 

  • Housley, R. M., Grant, R. W., and Paton, N. E. (1973) Origin and characteristics of excess Fe metal in lunar glass welded aggregates, Proc. Lunar Sci. Conf. 4th, pp. 2737–2749.

    Google Scholar 

  • Kerr, R., (1993) Magnetic ripple hints Gaspra is metallic, Science 259, 176.

    Article  ADS  Google Scholar 

  • Kivelson, M., Bargatze, L., Khurana, K., Southwood, D., Walker, R., and Coleman, P., Jr. (1993a) Magnetic signatures near Galileo’s closest approach to Gaspra, Science 261, 331–334.

    Article  ADS  Google Scholar 

  • Kivelson, M., Khurana, K., Russell, C., Southwood, D., Walker, R., and Wang, Z. (1993b) Ida Flyby: First Results from the Galileo Magnetometer, EOS, Fall Meeting Abstracts, p. 384. Lin, R. P., Anderson, K. A., and Hood, L. L. (1988) Lunar surface magnetic field concentrations antipodal to young large impact basins, Icarus 74, 529–541.

    Google Scholar 

  • Lin, R. P., (1979) Constraints on the origins of lunar magnetism from electron reflection measurements of surface magnetic fields, Phys. Earth Planet. Inter. 20, 271–280.

    Article  ADS  Google Scholar 

  • Melosh, H. J., (1989) Impact Cratering, Oxford University Press, New York.

    Google Scholar 

  • Möhlmann, D. (1992) The question of a Martian planetary magnetic field, Adv. Space Res. 12, 213–217.

    Article  ADS  Google Scholar 

  • Môhlmann, D., Riedler, W., Rustenbach, J., Schwingenschuh, K., Kurths, J., Motschmann, U., Roatsch, T., Sauer, K., and Lichtenegger, H. (1991) The question of an internal Martian magnetic field, Planet. Space. Sci. 39, 83–88.

    Article  ADS  Google Scholar 

  • Pesonen, L. J., Terho, M., and Kukkonen, I. (1993) Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics, Proc. NIPR Symp. Antarct. Meteorites 6, 401–416.

    Google Scholar 

  • Russell, C. T., Coleman, P. J., Jr., Fleming, B. K., Hilburn, L., Ioannidis, G., Lichtenstein, B. R., and Schubert, G. (1975) The fine scale lunar magnetic field, Proc. Lunar Sci. Conf. 6th, 2955–2969.

    Google Scholar 

  • Schultz, P.H. and Srnka, L.J. (1980) Cometary collisions on the moon and Mercury, Nature 284, 22–26.

    Article  ADS  Google Scholar 

  • Schubert, G., Ross, M., Stevenson, D., and Spohn, T. (1988) Mercury’s thermal history and the generation of its magnetic field, in F. Villas, C. Chapman, and M. S. Matthews (eds.), Mercury, University of Arizona Press, Tucson, pp. 429–460.

    Google Scholar 

  • Sonett, C. P. (1978) Evidence for a primordial magnetic field in the meteorite parent body era, Geophys. Res. Lett. 5, 151–154.

    Article  ADS  Google Scholar 

  • Srnka, L.J. (1977) Spontaneous magnetic field generation in hypervelocity impacts, Proc. Lunar Sci. Conf. 8th, Lunar and Planetary Institute, Houston, pp. 792–795.

    Google Scholar 

  • Stacey, F. D., and Banerjee S. K. (1974) The Physical Principles of Rock Magnetism,Elsevier, New York.

    Google Scholar 

  • Strangway, D. W., Gose, W., Pearce, G., and McConnell, R. K. (1973a) Lunar magnetic anomalies and the Cayley formation, Nature 246, 112–114.

    ADS  Google Scholar 

  • Strangway, D. W., Sharpe, H., Gose, W., and Pearce, G. (1973b) Magnetism and the history of the Moon, in C. D. Graham, Jr. and J. J. Rhyne (eds.), Magnetism and Magnetic Material1972, American Institute of Physics, New York, pp. 1178–1187.

    Google Scholar 

  • Sugiura, N., Wu, Y. M., Strangway, D. W., Pearce, G. W., and Taylor, L. A. (1979) A new magnetic paleointensity value for a young lunar glass, Proc. Lunar Planet. Sci. Conf. 10th, 2189–2198.

    Google Scholar 

  • Wasilewski, P. J. (1988) Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite, Phys. Earth Planet. Inter. 52, 150–158.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hood, L.L. (1995). Frozen Fields. In: Chahine, M.T., A’Hearn, M.F., Rahe, J., Solomon, P., Nickle, N.L. (eds) Comparative Planetology with an Earth Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1092-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1092-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4636-9

  • Online ISBN: 978-94-017-1092-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics