Skip to main content

Composition of Comets: Observations and Models

  • Conference paper
  • 106 Accesses

Abstract

We analyze the chemical composition and abundances of comets based on in situ measurements of Comet 1P/Halley and remote sensing observations of several recent bright comets including Hale–Bopp (C/1995 O1) and Hyakutake (C/1996 B2), in light of the elemental abundances of the solar system. Nitrogen is underabundant in comets relative to the solar system because nitrogen tends to be in N2, which is chemically relatively inert. While many details remain uncertain, some gross features are emerging. The abundance of water: silicates: carbonaceous molecules (CO, CO2, and hydrocarbons) by mass is approximately 1:1:1. Furthermore, the mass abundance of ice: dust (silicates and hydrocarbon polycondensates) is about 1:1. We compare a list of identified comet molecules with molecules detected in the interstellar medium, although a comparison with their relative abundances, particularly in the ice phase, would be more meaningful. However, ice-phase abundances are not yet available. One can expect a variation of the abundances of carbon-bearing molecules in comets to be associated with their place of origin in the solar nebula. However, we also note that comets are heterogeneous. Thus, observed differences may be related to the place of origin, heterogeneity of the nucleus, or acquired through evolution. The molecular and elemental compositions of the coma are most likely not the same as those in the nucleus. This is particularly true for volatile ices and their gases and for the dust-to-ice and dust-to-gas ratios. Analyses must carefully consider the three sources of gas: Water from the surface of the nucleus, gases more volatile than water from the interior of the nucleus, and gases from the sublimation of the dust distributed in the coma. Topography on the surface of the nucleus may cause important evolutionary differences in the dust-to-gas mass ratio. Relatively inactive areas on the surface of the nucleus are probably associated with convex topography. Gas sublimated from convex areas (hills and mountains) diverges more strongly relative to gas sublimated from concave areas, which can entrain dust more efficiently. Thus, the entrainment of dust from convex areas is poor and dust may fall back to the surface of the nucleus creating a dust mantle, which further inhibits outgassing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A’ Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V.: 1995, Icarus 118, 223–270.

    Article  ADS  Google Scholar 

  • Balsiger, H., Altwegg, K., and Geiss, J.: 1995, J. Geophys. Res. 100, 5827–5834.

    Article  ADS  Google Scholar 

  • Bar-Nun, A. and Kleinfeld, I.: 1989, Icarus 80, 243–253.

    Article  ADS  Google Scholar 

  • Biermann, L., Giguere, P. T., and Huebner, W. F.: 1982, Astron. Astrophys. 108, 221–226.

    ADS  Google Scholar 

  • Bockelée-Morvan, D., Gautier, D., Hersant, F., Huré, J.-M., and Robert, F.: 2002, Astron. Astrophys. 384, 1107–1118.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Gautier, D., Lis, D. C., Young, K., Keene, J., Phillips, T., Owen, T., Crovisier, J., Goldsmith, P. F., Bergin, E. A., Despois, D., and Wootten, A.: 1998, Icarus 133, 147–162.

    Article  ADS  Google Scholar 

  • Boss, A. P. and Vanhala, H. A. T.: 2000, Space Sci. Rev. 92, 13–22.

    Article  ADS  Google Scholar 

  • Carusi, A. and Valsecchi, G.: 1987, in Z. Ceplecha and P. Pecina (eds.), Interplanet. Matter, 21. Cassen, P.: 1994, Icarus 112, 405–429.

    Google Scholar 

  • Chick, K. M. and Cassen, P.: 1997, Astrophys. J. 477, 398–409.

    Article  ADS  Google Scholar 

  • Cochran, A. et al.: 2002, these proceedings.

    Google Scholar 

  • Dello Russo, N., Mumma, M. J., DiSanti, M. A., Magee-Sauer, K., and Novak, R.: 2001, Icarus 153, 162–179.

    Article  ADS  Google Scholar 

  • Delsemme, A. H.: 1991, in R. L. Newburn, Jr., M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Kluwer Academic Publishers, Dordrecht, pp. 377–428.

    Google Scholar 

  • Eberhardt, P., Reber, M., Krankowsky, D., and Hodges, R. R.: 1995, Astron. Astrophys. 302, 301–316.

    ADS  Google Scholar 

  • Ehrenfreund, P. and Charnley, S. B.: 2000, Ann. Rev. Astron. Astrophys. 38, 427–483.

    Article  ADS  Google Scholar 

  • Fegley, Jr., B.: 1999, in K. Altwegg, P. Ehrenfreund, J. Geiss, and W. F. Huebner (eds.), Composition and Origin of Cometary Materials, Kluwer Academic Publishers, Dordrecht, pp. 239–252.

    Google Scholar 

  • Geiss, J.: 1988, Rev. Mod. Astron. 1, 1–27.

    Article  ADS  Google Scholar 

  • Greenberg, J. M.: 1998, Astron. Astrophys. 330, 375–380.

    ADS  Google Scholar 

  • Grinspoon, D. H. and Lewis, J. S.: 1987, Icarus 72, 430–436.

    Article  ADS  Google Scholar 

  • Grün, E. and Jessberger, E.: 1990, in W. F. Huebner (ed.), Physics and Chemistry of Comets, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, pp. 113–176.

    Google Scholar 

  • Hartmann, L.: 1998, Accretion Processes in Star Formation, Cambridge University Press, New York. Hubbard, W. B. and MacFarlane, J. J.: 1980, Icarus 44, 676–682.

    ADS  Google Scholar 

  • Huebner, W. F.: 1987, Science 237, 628–630.

    Article  ADS  Google Scholar 

  • Huebner, W. F. and Benkhoff, J.: 1999, Earth Moon Planets 77, 217–222.

    Article  ADS  Google Scholar 

  • Irvine, W. M., Ohishi, M., and Kaifu, N.: 1991, Icarus 91, 2–6.

    Article  ADS  Google Scholar 

  • Kawakita, M., Watanabe, J., Ando, H., Aoki, W., Fuse, T., Honda, S., Izumiura, H., Kajino, T., Kambe, E., Kawanomoto, S., Noguchi, K., Okita, K., Sadakane, K., Sato, B., Takada-Hidai, M., Takeda, Y., Usuda, T., Watanabe, E., and Yoshida, M.: 2001, Science 294, 1089–1091.

    Article  ADS  Google Scholar 

  • Keller, H. U., Delamere, W. A., Huebner, W. F., Reitsema, H. J., Schmidt, H. U., Whipple, F. L., Wilhelm, K., Curdt, W., Kramm, R., Thomas, N., Arpigny, C., Barbieri, C., Bonnet, R. M., Cazes, S., Coradini, M., Cosmovici, C. B., Hughes, D. W., Jamar, C., Malaise, D., Schmidt, K., Schmidt, W. K. H., and Seige, P.: 1987, Astron. Astrophys. 187, 807–823.

    ADS  Google Scholar 

  • Kuehrt, E. and Keller, H. U.: 1994, Icarus 109, 121–132.

    Article  ADS  Google Scholar 

  • Levison, H. F. and Duncan, M. J.: 1987, Icarus 108, 18–36.

    Article  ADS  Google Scholar 

  • Lewis, J. S.: 1972, Icarus 16, 241.

    Article  ADS  Google Scholar 

  • Mahaffy, P., Veverka, J., Niemann, H., Harpold, D., Chiu, M., Reynolds, E., Owen, T., Kasprzak, W., Raaen, E., Patrick, E., and Demick, J.: 2001, BAAS 33, 1148.

    ADS  Google Scholar 

  • McFadden, L. A., A’ Hearn, M. F., Lisse, C. M., Wellnitz, D. D., Belton, M. J. S., Delamere, A., Klaasen, K. P., Kissel, J., Meech, K. J., Melosh, H. J., Schultz, P. H., Sunshine, J. M., Veverka, J., and Yeomans, D. K.: 2001, BAAS 33, 1148.

    ADS  Google Scholar 

  • Meier, R., Eberhardt, P., Krankowsky, D., and Hodges, R. R.: 1993, Astron. Astrophys. 277, 677–690.

    ADS  Google Scholar 

  • Meier, R., Owen, T. C., Matthews, H. E., Jewitt, D. C., Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, Science 279, 842–844.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, T. C., Jewitt, D. C., Matthews, H. E., Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, Science 279, 1707–1710.

    Article  ADS  Google Scholar 

  • Mumma, M. J., Dello Russo, N., DiSanti, M. A., Magee-Sauer, K., Novak, R. E., Brittain, S., Rettig, T., McLean, I. S., Reuter, D. C., and Xu, Li-H.: 200 1a, Science 292, 1334–1339.

    Google Scholar 

  • Mumma, M. J., McLean, I. S., DiSanti, M. A., Larkin, J. E., Dello Russo, N., Magee-Sauer, K., Becklin, E. E., Bida, T., Chaffee, F., Conrad, A. R., Figer, D. F., Gilbert, A. M., Graham, J. R., Levenson, N. A., Novak, R. E., Reuter, D. C., Teplitz, H. I., Wilcox, M. K., and Xu, Li-H.: 200 1b, Astrophys. J. 546, 1183–1193.

    Google Scholar 

  • Mumma, M. J., Weaver, H. A., and Larson, H. P.: 1987, Astron. Astrophys. 187, 419–424.

    ADS  Google Scholar 

  • Owen, T., Lutz, B. L., and de Bergh, C.: 1996, Nature 320, 244–246.

    Article  ADS  Google Scholar 

  • Schwehm, G. H. and Schulz, R.: 1999, Space Sci. Rev. 90, 313–319.

    Article  ADS  Google Scholar 

  • Weaver, H. A., Chin, G., Bockelée-Morvan, D., Corvisier, J., Brooke, T. Y., Cruikshank, D. P., Geballe, T. R., Kim, S. J., and Meier, R.: 1999, Icarus 142, 482–497.

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J.: 1997, Icarus 127, 290–306.

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J.: 2000, Space Sci. Rev. 92, 295–310.

    Article  ADS  Google Scholar 

  • Whipple, F. L.: 1950, Astrophys. J. 111, 375–394.

    Article  ADS  Google Scholar 

  • Whipple, F. L.: 1951, Astrophys. J. 113, 464–474.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Huebner, W.F. (2002). Composition of Comets: Observations and Models. In: Boehnhardt, H., Combi, M., Kidger, M.R., Schulz, R. (eds) Cometary Science after Hale-Bopp. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1086-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1086-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6288-8

  • Online ISBN: 978-94-017-1086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics