Skip to main content

The Molecular Biology of Bifidobacteria

  • Chapter
Colonic Microbiota, Nutrition and Health
  • 535 Accesses

Summary

Bacteria belonging to the genus Bifidobacterium are amongst the most abundant species of the human and animal intestinal microflora and consequently, can play a fundamental role in the ecology of the gastrointestinal tract in both health and disease. However, attempts to improve the characteristics of bifidobacteria for practical applications, and gain a detailed knowledge of the physiology of these organisms, have been severely limited by the lack of molecular tools. Some progress made over the past decade, concerning characterisation of the bifidobacterial genes, the development of cloning vectors, and genetic transformation systems is discussed here. These developments now provide the basis for genetic approaches, that will eventually lead to a better understanding of these important organisms and the potential development of strains with improved characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argnani, A., Leer, R.J., van Luijk, N. and Pouwels, P. (1996) A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 142, 109–14.

    Article  CAS  Google Scholar 

  • Bourget, N., Simonet, J.-M. and Decaris, B. (1993) Analysis of the genome of five Bifidobacterium breve strains: plasmid content, pulsed-field gel electrophoresis genome size estimation and rrn loci number. FEMS Microbiology Letters 110, 11–20.

    Article  CAS  Google Scholar 

  • Brigidi, P., Matteuzzi, D. and Crociani, E (1986) Protoplast formation and degeneration in Bifidobacterium. Microbiologica 9, 243–48.

    CAS  Google Scholar 

  • Fischer, W. (1987) Analysis of the lipoteichoic acid-like macroamphiphile from Bifidobacterium bifdum subspecies pennslyvanium by one-and two-dimensional 1H- and 13C-NMR spectroscopy. European Journal of Biochemistry 165, 647–52.

    Article  CAS  Google Scholar 

  • Frothingham, R., Duncan, A.J. and Wilson, K.H. (1993) Ribosomal DNA sequences of bifidobacteria: implications for sequenced based identification of human colonic flora. Microbial Ecology in Health and Disease 6, 23–27.

    Article  Google Scholar 

  • Griffin, H.G., Swindell, S.R. and Gasson, M.J. (1992) Cloning and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus !adds: evolutionary relationships between 21 different LDH enzymes. Gene 122, 193–97.

    Article  CAS  Google Scholar 

  • Hartke, A., Benachour, A., Boutibonnes, P. and Auffray, Y. (1996) Characterisation of a complex restriction/modification detected in a Bifidobacterium longum strain. Applied Microbiology and Biotechnology 45, 132–36.

    Article  CAS  Google Scholar 

  • Imamura, L., Hisamitsu, K. and Kobashi, K. (1994) Purification and characterization of B-fructofuranosidase from Bifidobacterium infantis. Biological and Pharmaceutical Bulletin 17, 596–602.

    Article  CAS  Google Scholar 

  • Iwata, M. and Morishita, T. (1989) The presence of plasmids in Bifidobacterium breve. Letters in Applied Microbiology 9, 165–68.

    Article  CAS  Google Scholar 

  • Kawase, K., Suzuki, T., Kiyosawa, I Okoonogi, S., Kawashima, T. and Kuboyama, M. (1981) Effects of com- position of infant’s formulas on the intestinal microflora of infants. Bifidobacteria Microflora 2, 25–31

    Google Scholar 

  • Kullen, M.J., Brady, L.J. and O’Sullivan, D.J. (1997) Evaluation of using a short region of the recA gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiology Letters 154, 377–83.

    Article  CAS  Google Scholar 

  • Leblond-Bourget, N., Herve, P., Mangin, I. and Decaris, B. (1996) 16S rRNA and 16S to 23S internal transcribed spacer sequence analysis reveal inter-and intraspecific Bifidobacterium phylogeny. International Journal of Systematic Bacteriology 46, 102–11.

    Google Scholar 

  • Le Bourgeois, P., Mata, M. and Ritzenthaler, P. (1991) Pulsed-field gel electrophoresis as a tool for studying the phylogeny and genetic history of lactococcal strains. In Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci, (eds. G.M. Dunny, P.P. Cleary, and L.L. McKay ), American Society for Microbiology, Washington DC. pp. 140–45.

    Google Scholar 

  • Luchansky, J.B., Muriana, P.M. and Klaenhammer, T.R. (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionobacterium. Molecular Microbiology 2, 637–46.

    Article  CAS  Google Scholar 

  • Mangin, I., Bourget, N., Simonet, J.-M. and Decaris, B. (1995) Selection of DNA probes which detect strain restriction polymorphisms in four Bifidobacterium species. Research in Microbiology 146, 59–71.

    Article  CAS  Google Scholar 

  • Matsumura, H., Takeuchi, A. and Kano, Y. (1997) Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Bioscience, Biotechnology and Biochemistry 61, 1211–12.

    Article  CAS  Google Scholar 

  • Matteuzzi, D., Brigidi, P., Rossi, M. and Di, D. (1990) Characterization and molecular cloning of Bifidobacterium longum plasmid pMB1. Letters in Applied Microbiology 11, 220–23.

    Article  CAS  Google Scholar 

  • Minowa, T., Iwata, S., Sakai, M. Masaki, H. and Ohata, T. (1989) Sequence and characteristics of the Bifido-bacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene 85, 161–68.

    CAS  Google Scholar 

  • Missich, R., Sgorbati, B. and Leblanc, D.J. (1994) Transformation of Bifidobacterium longum with pRM2, a constructed Escherichia coli-B. longum shuttle vector. Plasmid 32, 208–11.

    Article  CAS  Google Scholar 

  • Mitsuka, T. (1992) The human gastrointestinal tract, in The Lactic Acid Bacteria in Health and Disease (ed. B.J.B. Wood) Elsevier Applied Science, London, pp. 69–114.

    Google Scholar 

  • Nunoura, N., Ohdan, K., Tanaka, K., Tamaki, H., Yano, T., Inui, M., Yukawa, H., Yamamoto, K. and Kumagi, H. (1996) Cloning and nucleotide sequence of the B-D-glucosidase gene from Bifidobacterium breve db, and expression of B-D-glucosidase activity in Escherichia coli. Bioscience, Biotechnology and Biochemistry 60, 2011–18.

    Article  CAS  Google Scholar 

  • Nunoura, N., Ohdan, K., Yamamoto, K. and Kumagi, H. (1997) Expression of the B-D-glucosidase I gene in Bifidobacterium breve 203 during acclimation to cellobiose. Journal of Fermentation and Bioengineering 83, 309–14.

    Article  CAS  Google Scholar 

  • Park, M.S, Lee K.H. and Li, G.E. (1997) Isolation and characterization of two plasmids from Bifidobacterium longum. Letters in Applied Microbiology 25, 5–7.

    Article  CAS  Google Scholar 

  • Park, S.F. and Stewart, G.S.A.B. (1990) High efficiency transformation of Listeria monocytogenes by electroporation of penicillin treated cells. Gene 94, 129–32.

    Article  CAS  Google Scholar 

  • Powell, I.B., Achen, M.G., Hillier, A.J. and Davidson, B.E. (1988) Simple and rapid method for genetic transformation of lactic streptococci by electroporation. Applied and Environmental Microbiology 54, 655–60.

    CAS  Google Scholar 

  • Reddy, B.S. and Rivenson, A. (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary and liver carcinogenesis induced by 2-amino-3-methylimidazol [4,5-fiquinilone, a food mutagen. Cancer Research 53, 3914–18.

    CAS  Google Scholar 

  • Rossi, M., Brigidi, R. and Matteuzzi, D. (1997) An efficient transformation system for Bifidobacterium spp. Letters in Applied Microbiology 24, 33–36.

    Article  CAS  Google Scholar 

  • Rossi, M., Brigidi, P., Gonzalez Vara y Rodriguez, A. and Matteuzzi, D. (1996) Characterization of the plasmid pMB l from Bifidobacterium longum and its use for shuttle vector construction. Research in Microbiology 147, 133–43.

    Article  CAS  Google Scholar 

  • Roy, D., Ward, P. and Champagne, G. (1996) Differentiation of bifidobacteria by use of pulse-field gelelectrophoresis and polymerase chain reaction. International Journal of Food Microbiology 29, 11–29.

    Article  CAS  Google Scholar 

  • Scardovi, V. (1986) Genus Bifidobacterium, in Bergey’s Manual of Systematic Bacteriology, vol 2, (eds. P.H.A.

    Google Scholar 

  • Sneath, N.S. Mair, M.E. Sharpe and J.G. Holt), Williams and Wilkins, Baltimore, pp. 1418–34.

    Google Scholar 

  • Sgorbati, B., Scardovi, V. and Leblanc, D. (1982) Plasmids in the genus Bifidobacterium. Journal of General Microbiology 128, 2121–31.

    CAS  Google Scholar 

  • Sgorbati, B., Scardovi, V. and Leblanc, D. (1986a) Related structures in the plasmid profiles Bifidobacterium longum, Microbiologica 9, 415–22.

    CAS  Google Scholar 

  • Sgorbati, B., Scardovi, V. and Leblanc, D. (1986b) Related structures in the plasmid profiles of Bifidobacterium asteroides, B. indicum and B. globosum. Microbiologica 9, 443–56.

    CAS  Google Scholar 

  • Sgorbati, B. Smiley, M.B. and Sozzi, T. (1983) Plasmids and phages in Bifidobacterium longum. Microbiologica 6, 169–73.

    CAS  Google Scholar 

  • Stanier, R.Y., Ingraham, J.L., Wheelis, M.L. and Painter, P.R. (1987) The classification and phylogeny of bacteria, in General Microbiology, 5th Edition, Macmillan, London, pp. 311–29.

    Google Scholar 

  • Wang, X. and Gibson, G.R. (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the large intestine. Journal of Applied Bacteriology, 75, 373–80.

    Article  CAS  Google Scholar 

  • Yasui, H., Mike, A. and Ohawki, M. (1989) Immunogenicity of Bifidobacterium breve and change in the antibody production in Peyer’s patches. Journal of Dairy Science, 72, 30–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Park, S.F. (1999). The Molecular Biology of Bifidobacteria. In: Gibson, G.R., Roberfroid, M.B. (eds) Colonic Microbiota, Nutrition and Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1079-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1079-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4022-0

  • Online ISBN: 978-94-017-1079-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics