Skip to main content

Biotechnology and the Future of Coffee Production

  • Chapter
Coffee Biotechnology and Quality
  • 766 Accesses

Abstract

Coffee is a crop from tropical countries, which, according to FAO statistics, has annual production around 4 million tons of green beans with sales between 6 to 12 billion dollars (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate A. (1984), Investigation of coffee pulp as a feed ingredient for young goats in Kenya. Inaugural-Dissertation Universitat Bonn. Landwirtschaftliche Fakultat

    Google Scholar 

  • Abate A., Pfeffer E. (1986), Changes in nutrient intake and performance by goats fed coffee pulp-based diets followed by a commercial concentrate, Animal Feed Sci. Technol., 14 (1/2), 1–10

    Google Scholar 

  • Abate A. (1988), Coffee pulp: some indices of nutritional importance. Bull. Animal Health and Production in Africa (Bulletin de la santé et de la production animale en Afrique), 36 (1), 39–45

    Google Scholar 

  • Abraham S.K. (1996), Anti-genotoxic effects in mice after the interaction between coffee and dietary constituents, Food Chem. Toxicol., 34 (1): 15–20

    Article  CAS  Google Scholar 

  • Antier P., Minjares A., Roussos S., Raimbault M., Viniegra-Gonzalez G. (1993), Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enz. Microbiol., Technol., 15: 254–260

    Google Scholar 

  • Aregheore E.M. (1998), A review of implications of antiquality and toxic components in unconventional feedstuffs advocated for use in intensive animal production in Nigeria, Veter. Human Toxicol., 40 (1): 35–39

    CAS  Google Scholar 

  • Baracat-Pereira M.C., Minussi R.C., Coelho J.L.C., Silva D.O. (1997), Tea extract as an inexpensive inducer of pectin lyase in Penicillium griseoroseum cultured on sucrose, J. Ind. Microbiol. Biotechnol., 18 (5): 308–311.

    Article  CAS  Google Scholar 

  • Bello Mendoza R., Sanchez V,J.E. (1997), Anaerobic filter treatment of wastewater from mushroom cultivation on coffee pulp World J. Microbiol. Biotechnol., 13 (1): 51–55

    CAS  Google Scholar 

  • Bicchi C P., Binello A.E., Pellegrino G.M., Vanni A.C. (1995), Characterisation of green and roasted coffees through the chlorogenic acid fraction by HPLC UV and principal component analysis. J. Agric. Food Chem., 43 (6): 1549–1555

    Article  CAS  Google Scholar 

  • Boopathy R. (1987), Inoculum source for anaerobic fermentation of coffee pulp, Appl. Microbiol. Biotechnol, 26 (6): 588–594

    Article  CAS  Google Scholar 

  • Bressani R., Gonzalez J.M. (1978), Evaluation of coffee pulp as a possible substitute for maize in rations for broiler chicks, Arch. Latinoamer. Nutri., 28 (2): 208–221.

    CAS  Google Scholar 

  • Calzada J.F., Arriola, M.0 de., Castaneda, H. O., Godoy, J.E. and Rolz, C. (1984a), Methane from coffee pulp juice: experiments using polyurethane foam reactors, Biotechnol. Lett., 6 (6): 385–388

    CAS  Google Scholar 

  • Calzada, J.F., Porres E. Yurrita A., Arriola M.C., Micheo F. (1984b), Biogas production from coffee pulp juice: one and two phase systems, Agric. Wastes, 9 (3): 217–230.

    CAS  Google Scholar 

  • Calzada J.F., Rolz C., Del Carmen de Arriola M., Castaneda H., Godoy J E. (1986), Biogas production from coffee pulp juice using packed reactors: scale-up experiments, MIRCEN J. Appl. Microbiol. Biotechnol., 2 (4): 489–492

    Article  CAS  Google Scholar 

  • Calzada J.F., Leôn R. de., Arriola M.C., Rolz C. (1987), Growth of mushrooms on wheat straw and coffee pulp: strain selection. Biol. Wastes, 20 (3): 217–226

    Article  Google Scholar 

  • Carneiro M.F. (1997), Coffee biotechnology and its application in genetic transformation, Euphytica 96 (1): 167–172

    Article  Google Scholar 

  • Castelein J., Verachtert H. (1984), Coffee fermentation, Biotechnology, 5: 587–615

    Google Scholar 

  • Chatterjee G., Singh G., Thangam P. (1991), Clonal propagation of bamboo, coffee and mimosa. In-Horticulture. New Technologies and Applications (J. Prakash and R. L. M. Pierik, eds.), Bangalore, India, pp. 261–264

    Google Scholar 

  • Clifford M.N. (1979), Chlorogenic acids their complex nature and routine determination in coffee beans, Food Chem., 4 (1): 63–71

    Article  CAS  Google Scholar 

  • Clifford M.N., Ramirez-Martinez J.R. (1991), Phenols and caffeine in wet-processed coffee beans and coffee pulp, Food Chem., 40 (1): 35–42

    Article  CAS  Google Scholar 

  • Colton R.L. (1992), Soluble coffee’s new biotechnology. Developments in food science. Food Sci. Human Nutr., 29 341–346

    CAS  Google Scholar 

  • De Colmenares N.G., Ramirez-Martinez J.R., Aldana J.O., Clifford M.N. (1994), Analysis of proanthocyanidins in coffee pulp, J. Sci. Food Agric., 65 (2): 157–162

    Article  Google Scholar 

  • De Colmenares N.G., Ramirez-Martinez J.R., Aldana J.O., Ramos-Nino, M E., Clifford, M., Pekerar, S. and Mendez, B. (1998), Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. J. Sci. Food Agric., 77 (3): 368–372

    Article  Google Scholar 

  • Dibert K. and Cros, E. (1989), Solvent extraction of oil and chlorogenic acid from green coffee. I. equilibrium data. J. Food Eng., 10 (1): 1–11

    Article  Google Scholar 

  • Dibert, K., Cros E., Andrieu J. (1989), Solvent extraction of oil and chlorogenic acid from green coffee. II: Kinetic data. J. Food Eng., 10 (3): 199–214

    Article  Google Scholar 

  • Fagbenro O.A., Arowosoge I.A. (1991), Growth response and nutrient digestibility by Clarias isheriensis (Sydenham, 1980) fed varying levels of dietary coffee pulp as replacement for maize in low-cost diets. Biores. Technol., 37 (3): 253–258

    Article  CAS  Google Scholar 

  • Givens D.I., Barber W.P. (1986), In vivo evaluation of spent coffee grounds as a ruminant feed. Agric. Wastes, 18 (1): 69–72

    Article  Google Scholar 

  • Guillot F.L., Malnoe A., Stadler R.H. (1996), Antioxidant properties of novel tetraoxygenated phenylindanisomers formed during thermal decomposition of caffeic acid. J. Agric. Food Chem., 44 (9): 2503–2510

    Article  CAS  Google Scholar 

  • Guyot B., Bosquette B., Pina M., Graille J. (1997), Esterification of phenolic acids from green coffee with an immobilised lipase from Candida antarctica in solvent free medium. Biotechnol. Lett., 19 (6): 529–532

    Article  CAS  Google Scholar 

  • Habte T.-Y. (1989), Investigations on the nutritional value of coffee pulp. PhD Thesis, Justus-LiebigUniversitat Giessen

    Google Scholar 

  • Haffke H., Engelhardt U.H. (1986), Chlorogenic acids in coffee substitutes. Chlorogensauren in Kaffee-Ersatzstoffen. Zeit. Lebensmittel-Unter. Forschung, 183 (1): 45–46

    CAS  Google Scholar 

  • Huang M.T., Ferraro T. (1992), Phenolic compounds in food and cancer prevention. ACS Symposium Series, (507): 8–34

    Google Scholar 

  • Koge K., Orihara Y., Furuya T. (1992a), Effect of pore size and shape on the immobilisation of coffee (Coffea arabica L.) cells in porous matrices. Appl. Microbiol. Biotechnol., 36 (4): 452–455

    Article  Google Scholar 

  • Koge K., Orihara Y., Furuya T. (1992b), Immobilisation and culture of coffee (Coffea arabica L.) cells on novel culture systems using a basket-shaped unit, Biotechnol. Tech., 6 (4): 313–318

    CAS  Google Scholar 

  • Lanting J., Jordan J.A., Schone M.T., Kull A., Carey W.W., Kitney B.L. (1988), Thermophilic anaerobic digestion of coffee wastewater. Proc. Ind. Waste Conf., Purdue University. (43rd): 513–524

    Google Scholar 

  • Larde G. (1989), Investigation on some factors affecting larval growth in a coffee-pulp bed. Biol. Wastes 30 (4): 11–19

    Article  CAS  Google Scholar 

  • Larde G. (1990a), Growth of Ornidia obesa (Diptera:Syrphidae) larvae on composting coffee pulp. Biol. Wastes, 34 (1): 73–76

    Article  Google Scholar 

  • Larde G. (19906), Recycling of coffee pulp by Hermetian lucens (Diptera: Stratiomyidae) larvae. Biol. Wastes, 33 (4): 307–310

    Google Scholar 

  • Leon R., Calzada F., Herrera R., Rolz C. (1980), Fungal biomass production from coffee pulp juice for producing compost, biogas, feeds, ethanol, pectin and other chemical compounds. J. Ferment. Technol., 58 (6): 579–582

    Google Scholar 

  • Martinez D. (1984), Pleurotus ostreatus cultivation on agricultural wastes. I. Isolation and characterisation of native strains in different solid media in the laboratory. Biotica, 9 (3): 243–248

    Google Scholar 

  • Mason J.F., Giner L. (1979), “Converting coffee pulp into cattle feed. Food Eng. Internatl., 4(9): 35

    Google Scholar 

  • Millqvist-Fureby A., Mac Manus D.A., Davies S., Vulfson E.N. (1998), Enzymatic transformations in supersaturated substrate solutions. II. Synthesis of disaccharides via transglycosylation. Biotechnol. Bioeng., 60 (2): 197–203

    Article  PubMed  CAS  Google Scholar 

  • Moisyadi S., Neupane K.R., Stiles J.I. (1998), Cloning and characterisation of a cDNA encoding xanthosine N7 methyltransferase from coffee (Coffea arabica). Acta Hortic., (461): 367–377

    Google Scholar 

  • Okai D.B., Bonsi M.L.K., Easter R.A. (1985), Dried coffee pulp (DCP) as an ingredient in the diets of growing pigs. Trop. Agric., 62 (1): 62–64

    Google Scholar 

  • Onsando J.M., Waudo S.W. (1992), Effect of coffee pulp on Trichoderma sp: in Kenyan tea soils. Trop. Pest Management,. 38 (4): 376–381

    Article  Google Scholar 

  • Orozco FH., Cegarra J., Trujillo LM., Roig A. (1996), Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol. Fertil. Soils, 22 (1/2): 162–166

    Article  Google Scholar 

  • Penaloza Izurieta W. (1981), Solid fermentation of coffee pulp. MS Thesis, Universidad de San Carlos de Guatemala, Centro de Estudios Superiores en Nutricion y Ciencias de Alimentos

    Google Scholar 

  • Penaloza W., Molina M.R., Brenes R.G., Bressani R. (1985), Solid-state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl. Environ. Microbiol., 49 (2): 388–393

    PubMed  CAS  Google Scholar 

  • Porres C., Alvarez D., Calzada J. (1993), Caffeine reduction in coffee pulp through silage. Biotechnol. Adv., 11 (3): 519–523

    Article  PubMed  CAS  Google Scholar 

  • Quesada-Chanto A., Jimenez-Ulate F. (1996), In vitro evaluation of a Bacillus sp for the biological control of the coffee phytopathogen Mycena citricolor. World J. Microbiol. Biotechnol., 12 (1): 97–98

    Article  Google Scholar 

  • Rajasekhar T., Udayshankar K., Abraham K.O., Seshadri R., Shankaranarayana M.L. (1983), Studies on the utilisation of coffee by products (Husk, pulp, skin, leaves, twigs, wood) possible uses as manure, fuel, biogas, coffee pulp molasses, protein and caffeine extraction. Indian Coffee, 47 (4): 9–11

    Google Scholar 

  • Ramirez-Martinez J.R. (1988), Phenolic compounds in coffee pulp: quantitative determination by HPLC. J. Sci. Food Agric., 43 (2): 135–144

    Article  CAS  Google Scholar 

  • Rolz C., Leon R., Arriola M.C. (1988), Biological pre-treatment of coffee pulp. Biol. Wastes, 26 (2): 97–114

    Article  CAS  Google Scholar 

  • Roussos S., Aquidhuatl M de los A., Trejo-Hernandez M del R., Perraud LG., Favela E., Ramakrishna M., Raimbault M.,Viniegra-Gonzalez G. (1995), Biotechnological management of coffee pulp–isolation, screening, characterisation, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl. Microbiol. Biotechnol., 42 (5): 756–762

    CAS  Google Scholar 

  • Shand H. (1990), Coffee and biotechnology. Genewatch, 6 (2/3): 12–13

    Google Scholar 

  • Shankaranand VS., Lonsane BK (1994), Coffee husk: an inexpensive substrate for production of citric acid by Aspergillus niger in a solid-state fermentation system. World J. Microbiol. Biotechnol., 10 (2): 165–168

    Article  CAS  Google Scholar 

  • Sikka S.S., Bakshi M.P.S., Ichhponani J.S. (1985), Evaluation in vitro of spent coffee grounds as a livestock feed. Agric. Wastes, 13 (4): 315–317

    Article  CAS  Google Scholar 

  • Sondahl M.R., Lauritis J.A. (1992), Coffee biotechnology in agriculture. In: Biotechnology of Perennial Fruit Crops (eds. F. A. Hammerschlag and R. E. Litz ), pp. 401–420

    Google Scholar 

  • Srivastava K.C. (1993), Properties of thermostable hemicellulolytic enzymes from Thermomonospora strain 29 grown in solid state fermentation on coffee processing solid waste. Biotechnol. Adv., 11 (3): 441–465

    Article  PubMed  CAS  Google Scholar 

  • Tauk S.M. (1984), Identification of fungi isolated from coffee pulp. Naturalia, 9: 57–60

    Google Scholar 

  • Tauk S.M. (1985a), Effect of the addition of nitrogen and phosphorus on the growth of Candida utilis in coffee pulp juice. Rev. Microbiol., 16 (3): 188–194

    Google Scholar 

  • Tauk S.M. (1985b), Use of fungal inocula and pumice for composting coffee pulp. Agric. Ecosystems Environ., 14 (3/4): 291–298

    Article  Google Scholar 

  • Tauk S.M. (1986), Effect of concentration of total sugar and aeration on the growth of Candida utilis in culture of coffee pulp. Rev. Microbiol., 17 (3): 254–263

    CAS  Google Scholar 

  • Trugo L.C., Maria C.A.B., Werneck C.C. (1991), Simultaneous determination of total chlorogenic acid and caffeine in coffee by high performance gel filtration chromatography. Food Chem., 42 (1): 81–87

    Article  CAS  Google Scholar 

  • Uribe-Henao A. (1983), Influence of composted coffee pulp on coffee yield. Cenicafe, 34 (2): 44–58

    Google Scholar 

  • Vargas E., Cabezas M.T., Murillo, B., Braham, E. and Bressani, R. (1982), Effect of high levels of dehydrated coffee pulp on the growth and adaptation of young steers. Arch. Latinoamer. Nutri., 32 (4): 973–989

    CAS  Google Scholar 

  • Villagrân Blanco L.R. (1981), Evaluaci6n quimica de tratamientos microbiolôgicos anaerobicos para reducir los factores antifisiologicos de la pulpa de café. Master’s Thesis, Facultad de Ciencias y Farmacia. INCAP T, Universidad de San Carlos de Guatemala

    Google Scholar 

  • Villalobos V.M. (1989), Advances in tissue culture methods applied to coffee and cocoa. Plant Biotechnologies for developing countries. Proc. International Symp., Technical Centre for Agricultural and Rural Co-operation and the FAO, Luxembourg

    Google Scholar 

  • Wong Y.S., Wang X. (1991), Degradation of tannins in spent coffee grounds by Pleurotus sajor-caju. World J. Microbiol. Biotechnol., 7 (5): 573–574

    Article  CAS  Google Scholar 

  • Wu N. (1995), Composting coffee pulp in El Salvador. BioCycle, 36 (11): 82–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viniegra-González, G. (2000). Biotechnology and the Future of Coffee Production. In: Sera, T., Soccol, C.R., Pandey, A., Roussos, S. (eds) Coffee Biotechnology and Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1068-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1068-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5565-1

  • Online ISBN: 978-94-017-1068-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics