Skip to main content

Carbon, Sulfur and Nitrogen Biogeochemistry of Tropical Mangrove Sediments

  • Chapter
Coastal Zone Management Imperative for Maritime Developing Nations

Part of the book series: Coastal Systems and Continental Margins ((CSCM,volume 3))

Abstract

In the tropics coastal zone management often involves considerable effort to sustain and manage mangrove forests. Mangroves are among the most widespread and productive intertidal ecosystems in the world, covering up to 75 % of tropical coastlines. These ecosystems are also economically extremely valuable and are under increasing threat of being wiped out by rapid human encroachment and environmental pollution. Thus, an understanding of these ecosystems is vital to their survival. This review summarizes the current knowledge of biological processes related to carbon, nitrogen and sulfur dynamics in sediments of tropical mangrove forests, with special emphasis on high salinity fringe and basin forests dominated by Rhizophora spp. Several excellent reviews on community structure and dynamics in mangrove forests have been published recently (e.g., Alongi 1989a; Alongi et al., 1992; Robertson et al., 1992). Here results from studies on sources of organic input to sediments (e.g. litter fall and benthic primary production) with data on benthic carbon and nitrogen sinks; mineralization by aerobic (including crabs) and anaerobic (e.g. fermentation and sulfate reduction) pathways are emphasized. Aspects of sulfur cycling in relation to sulfate reduction and redox conditions in the sediment, and the role of nitrogen fixation, nitrification and denitrification for nitrogen dynamics in the sediment are also be evaluated. Budgets of carbon and nitrogen in the mid-intertidal zone of a standard tropical Rhizophora mangrove forest are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, L.J., 1976. In situ degradation of mangrove tissues. New Zealand J. Mar. Freshw. Res. 10: 385–389.

    Article  Google Scholar 

  • Alongi, D.M., 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb. Ecol. 15: 59–79.

    Article  Google Scholar 

  • Alongi, D.M., 1989a. The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystems. Rev. Aquat. Sci. 1: 243–280.

    Google Scholar 

  • Alongi, D.M., 1989b. The fate of bacterial biomass and production in marine benthic food chains. In: T.Hattori, Y.Ishida, Y.Maruyama, R.Y. Monta and A. Achida (eds.). Recent Advances in Microbial Ecology, pp. 355–359. Japan Sci. Soc. Press, Tokyo.

    Google Scholar 

  • Alongi, D.M. 1994. Zonation and seasonality of benthic primary production and oommunity respiration in tropical mangrove forests. Oecologia 98: 320–327.

    Article  Google Scholar 

  • Alongi, D.M., K.G. Boto and A.I. Robertson, 1992. Nitrogen and phosphorus cycles. In: A.I. Robertson and D.M.A longi (eds.). Tropical mangrove ecosystems, pp. 251–292. Coastal and Estuarine Studies 41. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Alongi, D.M. and P. Christoffersen, 1992. Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of outwelled mangrove detritus and physical disturbance. Mar. Ecol. Prog. Ser. 81: 229–245.

    Article  Google Scholar 

  • Alongi, D.M., P. Christoffersen and F. Tirendi. 1993. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J. Exp. Mar. Biol. Ecol. 171: 201–223.

    Article  Google Scholar 

  • Alongi, D.M. and A. Sasekumar, 1992. Benthic communities. In: A.I. Robertson and D.M. Alongi (eds.) Tropical mangrove ecosystems, pp. 137–171. Coastal and Estuarine Studies 41. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Altschuler, Z.S., M.M. Schnepfe, C.C. Silber and F.O. Simon, 1983. Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221: 221–227.

    Article  CAS  Google Scholar 

  • Andersen, F.Q. and E. Kristensen, 1988a. Oxygen microgradients in the rhizophere of the mangrove Avicennia marina. Mar. Ecol. Prog. Ser. 44: 201–204.

    Article  Google Scholar 

  • Andersen, F.Q. and E. Kristensen, 1988b. The influence of macrofauna on estuarine benthic community metabolism: a microcosm study. Mar. Biol. 99: 591–603.

    Google Scholar 

  • Ansbaek, J. and T.H. Blackburn, 1980. A method for the analysis of acetate turnover in a coastal marine sediment. Microb. Ecol. 5: 253–264.

    Google Scholar 

  • Benner, R. and R.E. Hodson, 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Prog. Ser. 23: 221–230.

    Google Scholar 

  • Benner, R., E.R. Peele and R.E. Hodson, 1986. Microbial utilization of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek Estuary, Bahamas. Estuar. Coast. Shelf Sci. 23: 607–619.

    Google Scholar 

  • Binnerup, S.J., K. Jensen, N.P. Revsbech, M.H. Jensen and J. Srrensen, 1992. Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques. Appl. Environ. Mi crobi ol. 58: 303–313.

    Google Scholar 

  • Blackburn, T.H., 1988. Benthic mineralization and bacterial production. In: T.H. Blackburn and J. Srrensen (eds.). Nitrogen Cycling in Coastal Marine Environments, pp. 175–189. John Wiley, Chichester.

    Google Scholar 

  • Blackburn, T.H. and K. Henriksen, 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnol. Oceanogr. 28: 477–493.

    Google Scholar 

  • Boonruang, P., 1978. The degradation rates of mangrove leaves of Rhizophora apiculata (B1.) and Avicennia marina (Forsk.) Vierh. at Phuket Island, Thailand. Phuket Mar. Biol. Ctr. Res. Bull. 26: 1–7.

    Google Scholar 

  • Boto, K.G., 1984. Waterlogged saline soils. In: S.C. Snedaker and J.G. Snedaker (eds.). The Mangrove Ecosystem: Research Methods, pp. 114–130. UNESCO, Paris.

    Google Scholar 

  • Boto, K.G., D.M. Alongi and A.L.J. Nott, 1989. Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove system. Mar. Ecol. Prog. Ser. 51: 243–251.

    Google Scholar 

  • Boto, K.G. and A.I. Robertson, 1990. The relationship between nitrogen fixation and tidal exports of nitrogen in a tropical mangrove system. Estuar. Coast. Shelf Sci. 31: 531–540.

    Google Scholar 

  • Boto, K.G. and J.T. Wellington, 1984. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7: 61–69.

    Article  CAS  Google Scholar 

  • Boto, K.G., J.S. Bunt and J.T. Wellington, 1984. Variations in mangrove forest productivity in northern Australia and Papua New Guinea. Estuar. Coast. Shelf. Sci. 19: 321–329.

    Google Scholar 

  • Brotas, V., A. Amorim-Ferreira, C. Vale and F. Catarino, 1990. Oxygen profiles in intertidal sediments of Ria Formosa (S. Portugal ). Hydrobiologia 207: 123–129.

    Google Scholar 

  • Bunt, J.S., K.G.Boto and G.Boto, 1979. A survey method for estimating potential levels of mangrove forest primary production. Mar. Biol. 52: 123–128.

    Google Scholar 

  • Capone, D.G. 1988. Benthic nitrogen fixation. In: T.H.Blackburn and J.Sorensen (eds.) Nitrogen Cycling in Coastal Marine Environments, pp. 85–123. John Wiley, Chichester.

    Google Scholar 

  • Carlson, P.R., L.A. Yarbro, C.F. Zimmermann and J.R. Montgomery, 1983. Pore water chemistry of an overwash mangrove island. Florida Sci. 46: 233–238.

    Google Scholar 

  • Chansang, H. and S. Poovachiranon, 1990. The fate of mangrove litter in a mangrove forest on Ko Yao Yai, southern Thailand. Phuket Mar. Biol Ctr. Res. Bull. 54: 33–46.

    Google Scholar 

  • Christensen, B., 1978. Biomass and primary production of Rhizophora apiculata Bl. in a mangrove in southern Thailand. Aquat. Bot. 4: 43–52.

    Google Scholar 

  • Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. Mar. Ecol. Prog. Ser. 14: 185–196.

    Google Scholar 

  • Cundell, A.M., M.S. Brown, R. Stanford and R. Mitchell, 1979. Microbial degradation of Rhizophora mangle leaves immersen in the sea. Estuar. Coast. Shelf Sci. 9: 281–286.

    Google Scholar 

  • Dye, A.H. 1983. Oxy en consumption by sediments in a Southern African mangrove swamp. Estuar. Coast. Shelf Sci. 17: 473–478.

    Google Scholar 

  • Dye, A.H. and T.A. Lasiak, 1986. Microbenthos, meiobenthos and fiddler crabs: trophic interactions in a tropical mangrove sediment. Mar. Ecol. Prog. Ser. 32: 259–264.

    Google Scholar 

  • Dye, A.H. and T.A. Lasiak, 1987. Assimilation efficiency of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp. Biochem. Physiol. 87A: 341–344.

    Google Scholar 

  • Emmerson, W.D. and L.E. McGwynne, 1992. Feeding and assimilation of mangrove leaves by the crab Sesarma meinerti de Man in relation to leaf-litter production in Magazana, a warm-temperate southern African mangrove swamp. J. Exp. Mar. Biol. Ecol. 157: 4153.

    Google Scholar 

  • Fenchel, T. and T.H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London, 225 p.

    Google Scholar 

  • Flores-Verdugo, F.J., J.W. Day and R. Briseno-Duenas, 1987. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Mar. Ecol. Prog. Ser. 35: 83–90.

    Google Scholar 

  • Giblin, A.E. 1988. Pyrite formation in marshes during early diagenesis. Geomicrobiol. J. 6: 77–97.

    Google Scholar 

  • Giblin, A.E. and R.W. Howarth, 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol. Oceanogr. 29: 47–63.

    Google Scholar 

  • Giddins, R.L., J.S. Lucas, M.J. Neilson and G.N. Richards, 1986. Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarminae). Mar. Ecol. Prog. Ser. 33: 147–155.

    Google Scholar 

  • Gocke, K., M. Vitola and G. Rojas, 1981. Oxygen consumption in a mangrove swamp on the Pacific coast of Costa Rica. Rev. Biol. Trop. 29: 143–154.

    Google Scholar 

  • Gong, W.-K. and J. E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar. Coast. Shelf Sci. 31: 519–530.

    Google Scholar 

  • Hart, M.G.R., 1959. Sulphur oxidation in tidal mangrove soils of Sierra Leone. Plant and Soil 11: 215–236.

    Article  Google Scholar 

  • Heald, E.J., 1969. The production of organic detritus in a South Florida estuary. Ph.D. dissertation, Univ. of Miami.

    Google Scholar 

  • Henriksen, K. and Kempp, W.M., 1988. Nitrification in estuarine and coastal marine sediments. In: T.H.Blackburn and J.Srrensen (eds.) Nitrogen Cycling in Coastal Marine Environments, pp. 207–249. John Wiley, Chichester.

    Google Scholar 

  • Hesse, P.R, 1961. Some differences between the soils of Rhizophora and Avicennia mangrove swamps in Sierra Leone. Plant and Soil 14: 335–346.

    Article  CAS  Google Scholar 

  • Hines, M.E. and W.B. Lyons. 1982. Biogeochemistry of nearshore Bermuda sediments: I. Sulfate reduction rates and nutrient regeneration. Mar. Ecol. Prog. Ser. 8: 87–94.

    Google Scholar 

  • Hoffman, W.E. and C.J. Dawes, 1980. Photosynthetic rates and primary production by two Florida benthic red algal species from a salt marsh and a mangrove community. Bull. Mar. Sci. 30: 358–364.

    Google Scholar 

  • Holmer, M., E. Kristensen, G. Banta, K. Hansen, M.H. Jensen and N. Bussarawit, 1994. Biogeochemical cycling of sulfur and iron in sediments of a south-east Asian mangrove, Phuket Island, Thailand. Biogeochemistry 25: 1–17.

    Google Scholar 

  • Howarth, R.W, 1979. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–51.

    Google Scholar 

  • Howarth, R.W. and A. Giblin. 1983. Sulfate reduction in the salt marshes at Sapelo Island,Georgia. Limnol. Oceanogr. 28: 70–82.

    Google Scholar 

  • Howarth, R.W. and B.B. Jorgensen, 1984. Formation of ‘S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during shortterm35SO42“ reduction measurements. Geochim. Cosmochim. Acta 48: 1807–1818.

    Google Scholar 

  • Howarth, R.W. and S. Merkel. 1984. Pyrite formation and the measurement of sulfate reduction in permeable sediments. Mar. Ecol. Prog. Ser. 89: 253–267.

    Google Scholar 

  • Howarth, R.W., R. Marino and J.J. Cole, 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669–687.

    Google Scholar 

  • lizumi, H., 1986. Soil nutrient dynamics. In: S. Cragg and N. Polunin (eds.) Workshop on Mangrove Ecosystem Dynamics, pp. 171–180. UNDP/UNESCO Regional Project, New Delhi.

    Google Scholar 

  • Jenkins, M.C. and W.M. Kemp, 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr. 29: 609–619.

    Google Scholar 

  • Jurgensen, B.B., 1983. Processes at the sediment-water interface. In: B. Bolin and R.B. Cook (eds.) The major biogeochemical cycles and their interactions, pp. 477–509. John Wiley, Chichester.

    Google Scholar 

  • Kimball, M.C. and H.J. Teas, 1975. Nitrogen fixation in mangrove areas of southern Florida. In: G.E. Walsh, S.C. Snedaker and H.J. Teas (eds.) Proceedings of the International Symposium on Biology and Management of Mangroves, pp. 651–660. University of Florida, Gainsville.

    Google Scholar 

  • King, G.M., 1988. Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnol. Oceanogr. 33: 376–390.

    Google Scholar 

  • Kofoed, L.H., S. Madsen and K. Olsen, 1985. The role of sesarmid crabs in the breakdown of mangal leaves. Report of the experimental work of the tropical marine biology study group, Odense University, at Phuket Marine Biological Center, Thailand Odense University, 78 p.

    Google Scholar 

  • Komiyama, A., K. Ogino, S. Aksornkoae and S. Sabhasri, 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structur of root biomass. J. Trop. Ecol. 3: 97–108.

    Google Scholar 

  • Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: Microbial activities and fluxes. In: T.H. Blackburn and J. Srrensen (eds.) Nitrogen Cycling in Coastal Marine Sediments, pp. 275–299. John Wiley, Chichester.

    Google Scholar 

  • Kristensen, E., 1990. Characterization of biogenic organic matter by stepwise thermogravimetry ( STG ). Biogeochemistry 9: 135–159.

    Google Scholar 

  • Kristensen, E. 1993. Seasonal variation in benthic community metabolism and nitrogen dynamics in a shallow, organic poor Danish lagoon. Estuar. Coast. Shelf Sci. 36: 565–586.

    Google Scholar 

  • Kristensen, E., 1994. Decomposition of macroalgae, vascular plants and sediment detritus in seawater: Use of stepwise thermogravimetry. Biogeochemistry 23: 1–24.

    Google Scholar 

  • Kristensen, E., F. Andersen and L.H. Kofoed. 1988. Preliminary assessment of benthic community metabolism in a south-east Asian mangrove swamp. Mar. Ecol. Prog. Ser. 48: 137–145.

    Google Scholar 

  • Kristensen, E., M. Holmer and N. Bussarawit, 1991. Benthic metabolism and sulfate reduction in a southeast Asian mangrove swamp. Mar. Ecol. Prog. Ser. 73: 93–103.

    Google Scholar 

  • Kristensen, E., A.H. Devol, S.I. Ahmed and M. Saleem, 1992 Preliminary study of benthic metabolism and sulfate reduction in a mangrove swamp of the Indus Delta, Pakistan. Mar. Ecol. Prog. Ser. 90: 287–297.

    Google Scholar 

  • Kristensen, E., M. olmer, G.T. Banta, M.H. Jensen and K. Hansen, 1995. Carbon, nitrogen and sulfur cycling in sediments of the Ao Nain Bor mangrove forest, Phuket, Thailand: A review. Phuket mar. biol. Cent. Res. Bull. 60: 37–64.

    Google Scholar 

  • Kristensen, E., G.M. King, M. Holmer, G.T. Banta, M.H. Jensen, K. Hansen and N. Bussarawit, 1994. Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand. Mar. Ecol. Prog. Ser. 109: 245–255.

    Google Scholar 

  • Lancelot, C. and G. Billen, 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv. Aquat. Microbiol. 3: 263–321.

    Google Scholar 

  • Lee, K.-H., M.A. Moran, R. Benner and R.E. Hodson, 1990. Influence of soluble components of red mangrove (Rhizophora mangle) leaves on microbial decomposition of structural (lignocellulosic) leaf components in seawater. Bull. Mar. Sci. 46: 374–386.

    Google Scholar 

  • Lee, S.Y. 1995. Mangrove outwelling: a review. Hydrobiologia 295: 203–212.

    Article  Google Scholar 

  • Lindau, C.W. and R.D. DeLaune, 1991. Dinitrogen and nitrous oxide emission and entrapment in Spartina alterniflora saltmarsh soils following addition of N-15 labelled ammonium and nitrate. Estuar. Coast. Shelf Sci. 32: 161–172.

    Google Scholar 

  • Lord III, C.J. and T.M. Church, 1983. The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction, and pyritisation. Geochim. Cosmochim. Acta 47: 1381–1391.

    Google Scholar 

  • Lugo, A.E. and S.C. Snedaker. 1974. The ecology of mangroves. Ann. Rev. Ecol. Syst. 5: 39–64.

    Google Scholar 

  • Lugo, A.E., G. Evink, M. Brinson, A. Broce and S.C. Snedaker, 1975. Diurnal rates of photosynthesis, respiration and transpiration in mangrove forests of south Florida. In: F.B. Golley and E. Medina (eds.) Tropical ecological systems, pp. 335–365. Springer, New York.

    Chapter  Google Scholar 

  • Luther III, G.W., A. Giblin, R.W. Howarth and R.A. Ryans, 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim. Cosmochim. Acta 46: 2665–2669.

    Google Scholar 

  • Luther III, G.W., T.G. Ferdelman, J.E. Kostka, E.J. Tsamakis and T.M. Church, 1991. Temporal and spatial variability of reduced sulfur species (FeS2, S2032“) and porewater parameters in salt marsh sediments. Biogeochemistry 14: 57–88.

    CAS  Google Scholar 

  • Mackin, J.E. and K.T. Swider, 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res. 47: 681–716.

    Google Scholar 

  • Michelson, A.R., M.E. Jacobsen, M.I. Scranton and J.E. Mackin. 1989. Modeling the distribution of acetate in anoxic estuarine sediments. Limnol. Oceanogr. 34: 747–757.

    Google Scholar 

  • Montague, C.L., 1982. The influence of fiddler crab burrows and burrowing on metabolic processes in salt marsh sediments. In: V.S. Kennedy (ed.) Estuarine comparisons, pp. 283–301. Academic Press, New York.

    Google Scholar 

  • Morell, J.M. and J.E. Corredor, 1993. Sediment nitrogen trapping in a mangrove lagoon. Estuar. Coast. Shelf Sci. 37: 203–212.

    Google Scholar 

  • Morris, J.T. and G.J. Whiting, 1986. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses. Estuaries 9: 9–19.

    Article  CAS  Google Scholar 

  • Nedwell, D.B., 1975. Inorganic nitrogen metabolism in a eutrophicated tropical mangrove estuary. Water Res. 9: 221–231.

    Article  CAS  Google Scholar 

  • Nedwell, D.B., S: E. Hall, A. Andersson, C.F. Hagstr’m and E.B. Lindstr’m, 1983. Seasonal changes in the distribution and exchange of inorganic nitrogen between sediment and water in the Northern Baltic (Gulf of Bothnia). Estuar. Coast. Shelf Sci. 17: 169–179.

    Google Scholar 

  • Nedwell, D.B., T.H.Blackburn and W.J.Wiebe, 1994. Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser. 110: 223–231.

    Google Scholar 

  • Nickerson, N.H. and F.R.Thibodeau,1985. Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry 1: 183–192.

    Google Scholar 

  • Nixon, S.W., B.N. Furnas, V. Lee, N. Marshall, J. E. Ong, C.H. Wong, W.-K. Gong and A. Sasekumar, 1984. The role of mangroves in the carbon and nutrient dynamics of Malaysia estuaries. In: E. Soepandmoe, A.N. Rao and D.J. Macintosh (eds.) Proceedings of the Asian Symposium on Mangrove Environments: Research and Management, pp. 496513. Univ. Malaya and UNESCO, Kuala Lumpur.

    Google Scholar 

  • Odum, W.E., 1970. Pathways of energy flow in a South Florida estuary. Ph.D. dissertation, Univ. of Miami.

    Google Scholar 

  • Oenema, O. 1990. Sulfate reduction in fine-grained sediments in the Eastern Scheldt, southwest Netherlands. Biogeochemistry 9: 53–74.

    Article  CAS  Google Scholar 

  • Parkes, R.J., J. Taylor and D. Jorck-Ramberg,1984. Demonstration, using Desulfobacter spp., of two pools of acetate with different biological availabilities in marine pore water. Mar. Biol. 83: 271–276.

    Google Scholar 

  • Pomroy, A.J., I.R. Joint and K.R. Clarke, 1983. Benthic nutrient flux in a shallow coastal environment. Oecologia 60: 306–312.

    Article  Google Scholar 

  • Poovachiranon, S. and P. Tantichodok, 1991. The role of sesarmid crabs in the mineralization of leaf litter of Rhizophora apiculata in a mangrove, southern Thailand. Phuket Mar. Biol. Ctr. Res. Bull. 56: 63–74.

    Google Scholar 

  • Rao, R.G., A.F. Woitchik, L. Goeyens, A. van Riet, J. Kazungu and F. Dehairs, 1994. Carbon, nitrogen contents and stable carbon isotope abundance in mangrove leaves from an east African coastal lagoon (Kenya). Aquat. Bot. 47: 175–183.

    Google Scholar 

  • Redfield, A.C., B.H. Ketchum and F.A. Richards, 1963. The influence of organisms on the composition of sea water. In: M.N.HilI (ed.) The Sea, Vol. 2, pp. 26–77. Wiley (Interscience), New York.

    Google Scholar 

  • Rice, D.L. and K.R. Tenore, 1981. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. Coast. Shelf Sci. 13: 681690.

    Google Scholar 

  • Rivera-Monroy, V.H., J.W. Day, R.R. Twilley, F. Vera-Herrera and C. Coronado-Molina 1995a. Flux of nitrogen and sediment in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuar. Coast. Shelf Sci. 40: 139–160.

    Google Scholar 

  • Rivera-Monroy, V.H., R.R. Twilley, R.G. Boustany, J.W. Day, F. Vera-Herrera and M.C. Ramirez, 1995b. Direct denitrification in mangrove sediments in Terminos Lagoon, Mexico. Mar. Ecol. Pros. Ser. 126: 97–109.

    Google Scholar 

  • Rivera-Monroy, V.H. and R.R. Twilley, 1996. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments ( Terrains Lagoon, Mexico). Limnol. Oceanogr. 41: 284–296.

    Google Scholar 

  • Robertson, A.I., 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in north eastern Australia. J. Exp. Mar. Biol. Ecol. 102: 237–248.

    Google Scholar 

  • Robertson, A.I., 1988. Decomposition of mangrove leaf litter in tropical Australia. J. Exp. Mar. Biol. Ecol. 116: 235–247.

    Google Scholar 

  • Robertson, A.I. and P.A. Daniel, 1989. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78: 191–198.

    Article  Google Scholar 

  • Robertson, A.I. and N.C. Duke, 1987. Insect herbivory on mangrove leaves in north Queensland. Austr. J. Ecol. 12: 1–7.

    Google Scholar 

  • Robertson, A.I., D.M. Alongi and K.G. Boto, 1992. Food chains and carbon fluxes. In: A.I. Robertson and D.M. Alongi (eds.) Tropical mangrove ecosystems, pp. 293–326. Coastal and Estuarine Studies 41. American Geophysical Union, Washington, DC.

    Chapter  Google Scholar 

  • Robertson, A.I., D.M. Alongi, P.A. Daniel and K.G. Boto, 1989. How much mangrove detritus enters the Great Barrier Reef Lagoon? Proc. 6th Internat. Coral Reef Symp. 2: 601–606.

    Google Scholar 

  • Rodriguez, C. and A.W. Stoner. 1990. The epiphyte community of mangrove roots in a tropical estuary: Distribution and biomass. Aquat. Bot. 36: 117–126.

    Google Scholar 

  • Saenger, P. and S.C. Snedaker, 1993. Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96: 293–299.

    Article  Google Scholar 

  • Sasekumar, A. and J.J. Loi, 1983. Litter production in three mangrove forest zones in the Malay Peninsular. Aquat. Bot. 17: 283–290.

    Google Scholar 

  • Shaiful, A.A.A., D.M. Abdul Manan, M.R. Ramli and R. Veerasamy, 1986. Ammonification and nitrification in wet mangrove soils. Malaysian J. Sci. 8: 47–56.

    Google Scholar 

  • Shaw, D.G., M.J. Alperin, W.S. Reeburgh and D.J. McIntosh. 1984. Biogeochemistry of acetate in anoxic sediments of Skan Bay, Alaska. Geochim. Cosmochim. Acta 48: 1819–1825.

    Google Scholar 

  • Sheridan, R.P., 1991. Epicaulous, nitrogen-fixing microepiphytes in a tropical mangal community, Guadeloupe, French W.I.Biotropica 23: 530–541.

    Google Scholar 

  • Skyring, G.W. 1987. Sulfate reduction in coastal ecosystems. Geomicrobiol. J. 5: 295–373.

    Google Scholar 

  • Smith, C.J., R.D. DeLaune and W.H. Patrick, 1983. Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuar. Coast. Shelf Sci. 17: 21–29.

    Google Scholar 

  • Smith, T.J. III, K.G. Boto, S.D. Frusher and R.L. Giddins, 1991. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar. Coast. Shelf Sci. 33: 419–432.

    Google Scholar 

  • Stanley, S.O., K.G.B oto, D.M. Alongi and F.T. Gillan, 1987. Composition and bacterial utili- zation of free amino acids in tropical mangrove sediments.Mar. Chem. 22: 13–30.

    CAS  Google Scholar 

  • Sultan-Ali, N.A., K. Krishnamurthy and M.J. Jeyaseelan, 1983. Energy flow through the benthic ecosystem of the mangroves with special reference to nematodes. Mahasagar 16: 317–325.

    Google Scholar 

  • Thode-Andersen, S. and B.B. Jorgensen, 1989. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S° in coastal marine sediments. Limnol. Oceanogr. 34: 793–806.

    Google Scholar 

  • Twilley, R.R.,1985. The exchange of organic carbon in basin mangrove forests in a Southwest Florida estuary. Estuar. Coast. Shelf Sci. 20: 543–557.

    Google Scholar 

  • Twilley, R.R., R.H. Chen and T. Hargis,1992. Carbon sinks in mangroves and their implication to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 64: 265–288.

    Google Scholar 

  • Twilley, R.R., G. Ejdung, P. Romare and W.M. Kemp, 1986a. A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in estuarine environments. Oikos 47: 190–198.

    Article  CAS  Google Scholar 

  • Twilley, R.R., A.E. Lugo and C. Patterson-Zucca, 1986b. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67: 670–683.

    Article  Google Scholar 

  • Van der Valk, A.G. and P.M. Attiwill, 1984. Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat. Bot. 18: 205–221.

    Article  Google Scholar 

  • Valiela, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman and J. Teal. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Mar. Sci. 35: 261–269.

    Google Scholar 

  • Viner, A.B., 1979. The status and transport of nutrients through the Purari River (Papua New Guinea). Purari River Hydroelectric Scheme Environ. Stud., Vol. 9. Publ. Environ. Conserv. Waigani, Papua New Guinea.

    Google Scholar 

  • Watta-Takorn, G., E. Wolanski and B. Kjerfve, 1990. Mixing, trapping and outwelling in the Kong Ngao mangrove swamp, Thailand. Estuar. Coast. Shelf Sci. 31: 667–688.

    Article  Google Scholar 

  • Weiner, J. and W. Grodzinski, 1984. Energy, nutrients, and pollutant budgets of the forest ecosystems. In: W. Grodzinski, J. Weiner and P.F. Maycock (eds.) Forest ecosystems in industrial regions, pp. 203–229, Springer, Berlin.

    Chapter  Google Scholar 

  • Woodroffe, C.D. 1985. Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus. Estuar. Coast. Shelf Sci. 20: 265–280.

    Article  Google Scholar 

  • Woodroffe, C.D., K.N. Bardsley, P.J. Ward and J.R. Hanley, 1988. Production of mangrove litter in a macrotidal embayment, Darwin Harbour, N.T., Australia. Estuar. Coast. Shelf Sci. 26: 581–598.

    Article  CAS  Google Scholar 

  • Zuberer, D.A. and W.S. Silver, 1978. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 35: 567–575.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kristensen, E. (1997). Carbon, Sulfur and Nitrogen Biogeochemistry of Tropical Mangrove Sediments. In: Haq, B.U., Haq, S.M., Kullenberg, G., Stel, J.H. (eds) Coastal Zone Management Imperative for Maritime Developing Nations. Coastal Systems and Continental Margins, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1066-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1066-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4922-3

  • Online ISBN: 978-94-017-1066-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics