Skip to main content

More on Norm Inequalities

  • Chapter
  • 1717 Accesses

Part of the book series: Mathematics and Its Applications () ((MAEE,volume 61))

Abstract

H. Xu and Z. Xu [1] claimed the following inequality in L p (1 < p < 2):

$${\left( {\left. {\parallel \lambda x + \mu y{\parallel ^2} + g\left( \mu \right)\parallel x - y{\parallel ^2}} \right)} \right.^{1/2}}{\left( {\lambda \parallel x{\parallel ^p} + \mu \parallel y{\parallel ^p}} \right)^{1/p}}$$
(1.1)

where x,yL p, 0 ≤ µ ≤ 1, λ = 1 − µ, in the case when the function g is given by g(µ) = µ λ(p − 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. XU, H. and Z. HU, An LP inequality and its applications to fixed point theory and approximation theory, Proc. Roy. Soc. Edinburgh Sect. A. 112 (1989), 343–351.

    Article  MathSciNet  MATH  Google Scholar 

  2. WEBB, J. R. L. and W. ZHAO, An LP inequality, Proc. Roy. Soc. Edinburgh Sect. A. 116 (1990), 129–131.

    Article  MathSciNet  MATH  Google Scholar 

  3. LIM, T. C., Fixed point theorems for uniformly Lipshitzian mappings in LP spaces, Nonlinear Anal. 7 (1983), 555–563.

    Article  MathSciNet  MATH  Google Scholar 

  4. LIM, T. C., On some LP inequalities in best approximation theory,J. Math. Anal. Appl. 154 (1991), 523–528.

    Article  MathSciNet  MATH  Google Scholar 

  5. SMARZEWSKI, R., Strongly unique minimization of functionals in Ba-nach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155–172.

    Article  MathSciNet  MATH  Google Scholar 

  6. SMARZEWSKI, R., Strongly unique best approximation in Banach spaces, J. Approx. Theory 46 1986), 184–194

    Article  MathSciNet  Google Scholar 

  7. WEBB, J. R. L. and W. ZHAO, On connections between set and ball measures of noncompactnes, Bull. London Math. Soc. 1991.

    Google Scholar 

  8. BYNUM, W. C. and J. H. DREW, A weak parallelogram law for L, Amer. Math. Monthly 79 (1972), 1012–1014.

    Article  MathSciNet  MATH  Google Scholar 

  9. LINDENSTRAUSS, J. and L. TZAFRIRI, “Classical Banach Spaces II, Functions Spaces”, Berlin, 1979.

    MATH  Google Scholar 

  10. SMARZEWSKI, R., On an inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146–150.

    Article  MathSciNet  MATH  Google Scholar 

  11. XU, Z., Characteristic inequalities of LP spaces and their applications, Acta Math. Sinica 32 (1989), 209–218.

    MATH  Google Scholar 

  12. KAY, D. C., A parallelogram law for certain L P spaces, Amer. Math. Monthly 79 (1967), 140–147.

    Article  MathSciNet  Google Scholar 

  13. ISHIKAWA, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150.

    Article  MathSciNet  MATH  Google Scholar 

  14. REICH, S., An iterative procedure for constructing zeros of accretive sets in Banach space, Nonlinear Anal. 2 (1978), 85–92.

    Article  MathSciNet  MATH  Google Scholar 

  15. PRUS, B. and R. SMARZEWSKI, Strongly unique best approximation and centres in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10–21.

    Article  MathSciNet  MATH  Google Scholar 

  16. XU, Z. and G. F. ROACH, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189–210.

    Article  MathSciNet  MATH  Google Scholar 

  17. JAKIMOVSKI, A. and D. C. RUSSELL, An inequality for the LP-norm related to uniform convexity, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 23–27.

    MathSciNet  MATH  Google Scholar 

  18. MEIR, A., On the uniform convexity of LP spaces, 1 p 2, Illinois J. Math. 28 (1984), 420–424.

    MathSciNet  MATH  Google Scholar 

  19. HARRIS, L. A., Bounds on the derivatives of holomorphic functions of vectors, in “Proc. Coll. Anal. Rio de Janeiro, 1972”, (L. Nachbin, ed. ), Paris, 1973.

    Google Scholar 

  20. WILLIAMS, L. R. and J. H. WELLS, LP inequalities, J. Math. Anal. Appl. 64 (1978), 518–529.

    Article  MathSciNet  MATH  Google Scholar 

  21. SCHOENBERG, I. J., Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522–536.

    Article  MathSciNet  Google Scholar 

  22. ROCKAFELLAR, R. T., Saddle points of Hamiltonian system in convex Lagrange problems having a nonzero discount rate, J. Econ. Theory 12 (1976), 71–113.

    Article  MathSciNet  MATH  Google Scholar 

  23. VIAL, J. P., Strong and weak convexity of sets and functions, Math. Oper. Res. 2 (1983), 231–259.

    Article  MathSciNet  Google Scholar 

  24. VASILEV, F. P. “Computation Methods for Solving Extremum Problems”, Moscow, 1988 (see p. 93).

    Google Scholar 

  25. PECARIC, J. E. and M. V. JOVANOVIC, Some inequalities for ca-convex functions, Anal. Numer. Theor. Approx. 19, No. 1 (1990), 67–70.

    MathSciNet  MATH  Google Scholar 

  26. JOVANOVIC, M., Some inequalities for strong quasiconvex functions, Glasnik Matematicki 24 (44) (1989), 25–29.

    MathSciNet  Google Scholar 

  27. JOVANOVIC, M., UopJtenja konveksnosti sa primenom u matematickom programiranju ( Doktorska disertacija) Matematicki fakultet, Beograd, 1989, in manuscript.

    Google Scholar 

  28. KHINTCHINE, A., Uber dyadische Brûche,Math. Z. 18 (1923), 109–116.

    Article  MathSciNet  MATH  Google Scholar 

  29. LITTLEWOOD, J. E., On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford 1 (1930), 164–174.

    Article  Google Scholar 

  30. SZAREK, S. J., On the best constants in the Khintchine inequality, Studia Math. 18 (1976), 197–208.

    MathSciNet  Google Scholar 

  31. HALL, R. R., On a conjecture of Littlewood, Math. Proc. Cambridge Phil. Soc. 78 (1975), 443–445.

    Article  MATH  Google Scholar 

  32. BOLLOBAS, B., Martingale inequalities, Math. Proc. Cambridge Phil. Soc. 87 (1980), 377–382.

    Article  MathSciNet  MATH  Google Scholar 

  33. MACAK, I. K. and A. N. PLICKO, Neravenstvo Hineina i asimptotieeskoe povedenie summ Enxn v banahovyh reietkah, Ukr. Mat. Zuni. 42 (1990), 639–644.

    Google Scholar 

  34. ZYGMUND, A., “Trigonometric Series”, Vol. 1, Cambridge, 1959.

    Google Scholar 

  35. STECKIN, S. B., On the best lacunary systems of functions (Russian), Izv. Acad. Nauk SSSR, Ser. Mat. 25 (1961), 357–366.

    MathSciNet  Google Scholar 

  36. HAAGERUP, U., The best constants in the Khintchine inequality, “Operator Algebras, Ideals, and Their Applications in Theoretical Physics”, Proc. Int. Conf. Leipzig, 1977, 69–79.

    Google Scholar 

  37. DUREN, P. L., “Theory of HP Spaces”, New York, 1970.

    Google Scholar 

  38. MALIGRANDA, L. and L. E. PERSSON, On Clarkson’s inequalities and interpolation, Math. Nachr. 155 (1992), 187–197.

    Article  MathSciNet  MATH  Google Scholar 

  39. TOMCZAK-JAEGERMANN, N., The modulii of smoothness and convexity and the Rademacher averages of trace classes S p (1 p oo), Studia Math. 50 (1974), 163–182.

    MathSciNet  Google Scholar 

  40. LINDENSTRAUSS, J. and A. PELCZYNSKI, Absolutely summing operators in L p -spaces and their applications, Stud. Math. 29 (1968), 275–326.

    MathSciNet  MATH  Google Scholar 

  41. KRIVINE, J. L., Constantes de Grothendieck et fonctions de type positif sur les sphères, Advances in Math. 31 (1979), 16–30.

    Article  MathSciNet  MATH  Google Scholar 

  42. HAAGERUP, U., A new upper bound for the complex Grothendieck constant, Israel J. Math. 60 (1987), 199–224.

    Google Scholar 

  43. PISIER, G., Grothendieck’s theorem for non-commutative C -algebras with an appendix on Grothendieck’s constant, J Funct. Anal. 29 (1978), 379–415.

    Article  MathSciNet  Google Scholar 

  44. KÖNIG, H., On the complex Grothendieck constant in the n-dimensional case, “General Inequalities”, Oberwolfach, 1990.

    Google Scholar 

  45. GRANGE, M., Quelques consequences de l’inegalite de Grothendieck, Univ Bordeaux I, U.E.R. Math. Sem. Anal. Fonc. 1975–1979, 15–28.

    Google Scholar 

  46. BLEI, R. C., An elementary proof of the Grothendieck inequality, Proc. Amer. Math. Soc. 100 (1987), 58–60.

    Article  MathSciNet  MATH  Google Scholar 

  47. TONGE, A., Random Clarkson inequalities and L p version of Grothendieck’s inequality, Math. Nachr. 131 (1987), 335–343.

    Article  MathSciNet  MATH  Google Scholar 

  48. GLEASON, A. M., A search problem in the n-cube, Proc. Symp. Appl. Math. Vol. 10, Amer. Math. Soc., Providence, R. I., 1960, pp. 175–179.

    Google Scholar 

  49. GORDON, Y. and H. S. WITSENHAUSEN, On extensions of the GaleBerlekamp switching problem and constants of f p -spaces, Israel J. Math. 11 (1972), 216–229.

    MATH  Google Scholar 

  50. MOON, J. W. and L. MOSER, An extremal problem in matrix theory, Mat. Vesnik 3 (1966), 209–211.

    Google Scholar 

  51. BROWN, T. A. and J. H. SPENCER, Notes on combinatorics: The distribution of coset leaders in a certain code, Rand Corp. Memorandum RM-6201/3-PR, July 1970.

    Google Scholar 

  52. GORDON, Y., On p-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969), 151–163.

    MATH  Google Scholar 

  53. GARLING, D. J. H. and Y. GORDON, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346–361.

    MathSciNet  MATH  Google Scholar 

  54. DVORETZKY, A. and C. A. ROGERS, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192–197.

    Article  MathSciNet  MATH  Google Scholar 

  55. GURARI, V. E., M. E. KADEC and V. E. MACAEV, On the distance between isomorphic L p spaces of finite dimension (Russian), Mat. Sb. 70 (112) (1966), 481–489.

    Google Scholar 

  56. MASCIONI, V. and U. MATTER, Weakly (q, p)-summing operators and weak cotype properties of Banach spaces, Proc. Roy. Irish Acad. Sec. A. Math. Phys. Sci. 88 (1988), 169–177.

    MathSciNet  MATH  Google Scholar 

  57. HYDE, B. M., On the product norms of orthogonal vectors, Math. Mag. 40 (1967), 141–143.

    Article  MathSciNet  MATH  Google Scholar 

  58. BERGER, C. A. On the numerical range of an operator,Bull. Amer. Math. Soc., to appear.

    Google Scholar 

  59. BERGER, C. A. and J. G. STAMPFLI, Mapping theorems for numerical range, Amer. J. Math. 89 (1967), 1047–1055.

    Article  MathSciNet  MATH  Google Scholar 

  60. KATO, T., Some maping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652–655.

    Article  MATH  Google Scholar 

  61. PEARCY, C., An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289–291.

    MathSciNet  MATH  Google Scholar 

  62. HALMOS, P. R., “Hilbert Space Problem Book”, 1967.

    Google Scholar 

  63. HALMOS, P. R., “Introduction to Hilbert Space and the Theory of Spectral Multiplicity”, New York, 1951.

    MATH  Google Scholar 

  64. BOHNENBLUST, H. F. and S. KARLIN, Geoemtrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  65. GLICKFELD, B. W., On an inequality of Banach algebra geometry and semi-inner-product space theory, Notices Amer. Math. Soc., 15 (1968), 339–340.

    Google Scholar 

  66. CRABB, M. J., Numerical range estimates for the norms of iterated operators, Glasgow Math. J. 11 (1970), 85–87.

    MathSciNet  MATH  Google Scholar 

  67. BOLLOBAS, B., The power inequality on Banach spaces, Proc. Camb. Phil. Soc., 69 (1971), 411–415.

    Article  MathSciNet  MATH  Google Scholar 

  68. MIRMAN, B. A., Numerical range and norm of a linear operator, Voronei. Trudy. Ser. Funk. Anal. No. 10 (1968), 51–55.

    MathSciNet  Google Scholar 

  69. GOLDBERG, M. and E. G. STRAUS, On a theorem by Mirman, Linear and Multilinear Algebra 5 (1977), 77–78.

    Article  MathSciNet  MATH  Google Scholar 

  70. FAN, Ky, Inequalities for proper contractions and strictly dissipative operators, Lin. Algebra and its Appl. 105 (1988), 237–246.

    Article  MATH  Google Scholar 

  71. FAN, Ky, Analytic functions of a proper contraction, Math. Z 160 (1978), 275–290.

    Article  MathSciNet  Google Scholar 

  72. FAN, Ky, Julia’s lemma for operators, Math. Ann 239 (1979), 241–245.

    Article  MathSciNet  MATH  Google Scholar 

  73. FAN, Ky, Harnack’s inequalities for operators, In: “General In- equalities 2”, (ed. E. F. Beckenbach), Boston 1980, 333–339.

    Google Scholar 

  74. FAN, Ky, Iteration of analytic functions of operators, Math. Z 179 (1982), 293–298.

    Article  MathSciNet  MATH  Google Scholar 

  75. FAN, Ky, The angular derivative of an operator-valued analytic function, Pacific J. Math 121 (1986), 67–72.

    Article  MathSciNet  MATH  Google Scholar 

  76. ANDO, T. and Ky FAN, Pick-Julia theorems for operators, Math. Z 169 (1979), 23–34.

    Article  MathSciNet  Google Scholar 

  77. DUNFORD, N. and J. T. SCHWARTZ, “Linear Operators. Part I: General Theory”, New York, 1958.

    Google Scholar 

  78. NIETO, J. I., Gâteaux differentials in Banach algebras, Math. Z 139 (1979), 23–34.

    Article  Google Scholar 

  79. NIETO, J. I., Sur une inégalité en analyse fonctionnelle, Math. Ann 189 (1970), 77–86.

    Article  MathSciNet  MATH  Google Scholar 

  80. NIETO, J. I., Sur un théorème d’interpolation de J. Lions et J. Pee- tre, Canad. Math. Bull 14 (1971), 272–276.

    Article  Google Scholar 

  81. RASSIAS, Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc 72 (1978), 297–300.

    Article  MathSciNet  MATH  Google Scholar 

  82. RASSIAS, Th. M.,, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl, 158 (1991), 106–113.

    Article  MathSciNet  MATH  Google Scholar 

  83. GER, R., Functional inequalities stemming from stability questions, in “General Inequalities - Oberwolfach”, 1990.

    Google Scholar 

  84. WAADELAND, H., A generalized Valiron inequality, unpublished paper.

    Google Scholar 

  85. LANDAU, E., Uber die Blochsche Knstante und zwei vermandte Weltkonstanten, Math. Z 30 (1929), 608–634.

    Article  MathSciNet  MATH  Google Scholar 

  86. WAADELAND, H., Untersuchungen ûber Aquivalenzulassen normierter, schlichter Funktionen, Norsk Vid. Selsk. Skr. (Trondheim), 1959, No. 3.

    Google Scholar 

  87. WAADELAND, H.Uber beschrânkte schlichte Funktionen INorske vid. Selsk. Forh. (Trondheim) 1959No. 15

    Google Scholar 

  88. WAADELAND, H. Uber einen Satz von ValironNorske vid. Selsk. Forh. (Trondheim) 1960 No 22.

    Google Scholar 

  89. LING, C. H., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212.

    Google Scholar 

  90. ALSINA, C. and M. S. TOMAS, Smooth convex t-norms do not exist, Proc. Amer. Math. Soc. 102 (1988), 317–320.

    MathSciNet  MATH  Google Scholar 

  91. ALSINA, C. and M. S. TOMAS, On t-norms domianting quasiarithmetic meansto ap-pear

    Google Scholar 

  92. ALSINA, C. and M. S. TOMAS, On 3-positive semidefinite strict t-norms and semi-metrics,in “General Inequalities - Oberwolfach”, 1990.

    Google Scholar 

  93. OKADA, M. and K. YABUTA, An inequality for functions, Acta Sci. Math. 38 (1976), 145–148.

    MATH  Google Scholar 

  94. KORNEÎCUK, N. P., “Toenye Konstanty v Teorii Priblizenija”, Moskva, 1987 (see pp. 395–396).

    Google Scholar 

  95. BARI, N. K., Generalization of inequalities of S. N. Bernstein and A. A. Markoff (Russian), Izvestya Akad. Nauk SSSR Ser. Mat. 18 (1954), 159–176.

    MathSciNet  MATH  Google Scholar 

  96. NIKOL’SKII, S. M., Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables (Russian), Trudy Mat. Inst. Steklov 38 (1951), 244–278.

    Google Scholar 

  97. NIKOL’SKII, S. M., Some inequalities for entire functions of finite degree of several variables and their applications (Russian), Dokl. Akad. Nauk. SSSR (N.S.) 76 (1951), 785–788.

    Google Scholar 

  98. SZEGO, G. and Z. ZYGMUND, On certain mean values of polynomials,J. Analyse Math. 3 (1953/54), 225–244.

    Google Scholar 

  99. DAVENPORT, H. and H. HALBERSTAM, The values of a trigonometric polynomial at well spaced points, Mathematica 13 (1966), 91–96.

    MathSciNet  MATH  Google Scholar 

  100. IZUMI, M. and S. IZUMI, On a theorem concerning trigonometrical polynomials, Proc. Japan Acad. 43 (1967), 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  101. LEBESGUE, H., Sur la représentation trigonométrique approchée des fonctions satisfaisant a une condition de Lipschitz,Bull. Soc. Math. France 38 (1910), 184–210.

    MathSciNet  MATH  Google Scholar 

  102. ZYGMUND, A., “Trigonometriceskie Rjady, t.1 and t.2, Moskva, 1965.

    Google Scholar 

  103. TELJAKOVSKII, S. A., Priblijenie differenciruemyh funkcii éastnymi summami ih rjadov, Furie, Mat. Zametki 4 (1968), 291–300.

    MathSciNet  Google Scholar 

  104. OSKOLKOV, K. I., K neravenstvu Lebega v ravnomernoi metrike i na mno,zestve polnoâ mery, Mat. Zametki 18 (1975), 515–526.

    MathSciNet  MATH  Google Scholar 

  105. DURAND, A., “Quelques Aspects de la Théorie Analytique des Poly-nomes I”, Univ. de Limoges, Janvier, 1984.

    Google Scholar 

  106. SONS, L. R., Polynomial growth along Jordan arcs, Math. Z. 141 (1975), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  107. DURAND, A., “Quelques Aspects de la Théorie Analytique des Poly-nomes II”, Univ. de Limoges, Juin, 1984.

    Google Scholar 

  108. MAHLER, K., An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100.

    Article  MathSciNet  MATH  Google Scholar 

  109. DUNCAN, R. L., Some inequalities for polynomials, Amer. Math. Monthly 73 (1966), 58–59.

    Article  MATH  Google Scholar 

  110. GONÇALVES, J. V., L ’inégalité de W. Specht, Univ. Lisboa Revista Fac. de Ciências (2) ser A (1950), 167–171.

    Google Scholar 

  111. OSTROWSKI, A. M., On an inequality of J. Vincente Gonçalves, Univ. Lisboa Revista Fac. de Ciências A(2) 8 (1960), 115–119.

    MathSciNet  MATH  Google Scholar 

  112. MIRSKY, L., Estimates of zeros of a polynomial,Proc. Cambridge Phil. Soc. 58 (1962), 229–234.

    Google Scholar 

  113. van der CORPUT, J. G. and C. VISSER, Inequalities concerning polynomials and trigonometric polynomials, Neder. Akad. Wetensch. Proc. 49 (1946), 383–392.

    MATH  Google Scholar 

  114. CALLAHAN, F. P., An extremal problem for polynomials, Proc. Amer. Math. Soc. 10 (1959), 754–755.

    Article  MathSciNet  MATH  Google Scholar 

  115. BOAS, R. P., Inequalities for polynomials with a prescribed zero. P., Inequalities for polynomials with a prescribed zero, “Studies in Mathematical Analysis and Related Topics”, Stanford, 1962, 42–47.

    Google Scholar 

  116. FEJES, L., Two inequalities concerning trigonometric polynomials, J. London Math. Soc. 14 (1939), 44 46.

    Google Scholar 

  117. BOAS, R. P., Inequalities for the coefficients of trigonometric polynomials, Indagationes Math. 9 (1947), 298–301.

    Google Scholar 

  118. BOAS, R. P., Inequalities for the coefficients of trigonometric poly- nomals, II, Indagationes Math. 9 (1947), 369–372.

    Google Scholar 

  119. NATANSON, I. P., “Constructive Function Theory”, Vol. 1, New York, 1964, p. 56.

    Google Scholar 

  120. BOJANIC, R. and C. STANOJEVIC, A class of L 1 -convergence, Trans. Amer. Math. Soc. 269 (1982), 677–683.

    Article  MathSciNet  MATH  Google Scholar 

  121. ZAGIER, D., Inequalities for the Gini coefficient of composite populations, J. Math. Econ., 1981.

    Google Scholar 

  122. MITRINOVIC, D. S., J. E. PECARIC and L. E. PERSSON, On a general inequality with applications, Z. Anal. Anwend. 11 (1992), 285–290.

    MathSciNet  MATH  Google Scholar 

  123. GONCAROV, V. L., “Teorija Interpolirovanija i Priblizenija Funkcii”, Moskva, 1954.

    Google Scholar 

  124. BERNSTEIN, S. N., Neskol’ko zameaanii o mnogoclenah naiman’sego uklonenija s celymi koefficientami, Socinenija, t.1, Moskva (1930), 285–320.

    Google Scholar 

  125. BERNSTEIN, S. N., “Ekstremal’nye Svoistva Polinomov i Nailucsee Pri blizenie Nepreryvnyh Funkcii Odnoi Vescetvennoi Peremennoi”, Moskva 1937.

    Google Scholar 

  126. BERNSTEIN, S. N., O nekotoryh svov istvah ciklieeski monotonnyh funkcii, Socnenija, t.2, Moskva (1950), 493–516.

    Google Scholar 

  127. TIMAN, A. F., “Teorija Priblizenija Funkcii Deistvitel’nogo Peremennogo”, Moskva, 1960.

    Google Scholar 

  128. ISAC, G. and Th. M. RASSIAS, On the Hyers-Ulam stability of - additive mappings,J. Approx. Theory, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1993). More on Norm Inequalities. In: Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1043-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1043-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4225-5

  • Online ISBN: 978-94-017-1043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics