Skip to main content

Martian Volatiles: Isotopic Composition, Origin, and Evolution

  • Conference paper
Chronology and Evolution of Mars

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 12))

Abstract

Information about the composition of volatiles in the Martian atmosphere and interior derives from Viking spacecraft and ground-based measurements, and especially from measurements of volatiles trapped in Martian meteorites, which contain several distinct components. One volatile component, found in impact glass in some shergottites, gives the most precise measurement to date of the composition of Martian atmospheric Ar, Kr, and Xe, and also contains significant amounts of atmospheric nitrogen showing elevated 15N/14N. Compared to Viking analyses, the 36Ar/132Xe and 84Kr/132Xe elemental ratios are larger in shergottites, the 129Xe/132Xe ratio is similar, and the 40Ar/36Ar and 36Ar/38Ar ratios are smaller. The isotopic composition of atmospheric Kr is very similar to solar Kr, whereas the isotopes of atmospheric Xe have been strongly mass fractionated in favor of heavier isotopes. The nakhlites and ALH84001 contain an atmospheric component elementally fractionated relative to the recent atmospheric component observed in shergottites. Several Martian meteorites also contain one or more Martian interior components that do not show the mass fractionation observed in atmospheric noble gases and nitrogen. The D/H ratio in the atmosphere is strongly mass fractionated, but meteorites contain a distinct Martian interior hydrogen component. The isotopic composition of Martian atmospheric carbon and oxygen have not been precisely measured, but these elements in meteorites appear to show much less variation in isotopic composition, presumably in part because of buffering of the atmospheric component by larger condensed reservoirs. However, differences in the oxygen isotopic composition between meteorite silicate minerals (on the one hand) and water and carbonates indicate a lack of recycling of these volatiles through the interior. Many models have been presented to explain the observed isotopic fractionation in Martian atmospheric N, H, and noble gases in terms of partial loss of the planetary atmosphere, either very early in Martian history, or over extended geological time. The number of variables in these models is large, and we cannot be certain of their detailed applicability. Evolutionary data based on the radiogenic isotopes (i.e., 40Ar/36Ar, 129Xe/132Xe, and 136Xe/132Xe ratios) are potentially important, but meteorite data do not yet permit their use in detailed chronologies. The sources of Mars’ original volatiles are not well defined. Some Martian components require a solar-like isotopic composition, whereas volatiles other than the noble gases (C, N, and H2O) may have been largely contributed by a carbonaceous (or cometary) veneer late in planet formation. Also, carbonaceous material may have been the source of moderate amounts of water early in Martian history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acura, M.H. 1998,`Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission’, Science 279, 1676–1680.

    Google Scholar 

  • Ahrens T. J.: 1990, `Earth Accretion’, in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, New York, pp. 211–227.

    Google Scholar 

  • Bao H., Thiemens, M.H., Farquhar, J., Campbell, D.A., Lee, C.C., Heine, K., and Loope, D.B.: 2000, `Anomalous 170 Compositions in Massive Sulphate Deposits on the Earth’, Nature 406, 176–178.

    Article  ADS  Google Scholar 

  • Becker, R.H., and Pepin, R.O.: 1984, `The Case for a Martian Origin of the Shergottites: Nitrogen and Noble Gases in EETA79001’, Earth Planet. Sci. Lett. 69, 225–242.

    Article  ADS  Google Scholar 

  • Benz, W., and Cameron, A.G.W.: 1990, `Terrestrial Effects of the Giant Impact’, in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, New York, pp. 61–67.

    Google Scholar 

  • Bogard, D.D.: 1997, `A Reappraisal of the Martian 36Ar/38Ar Ratio’, J. Geophys. Res. 102, 1653–1661.

    Article  ADS  Google Scholar 

  • Bogard, D.D. and Johnson, P.: 1983, `Martian Gases in an Antarctic Meteorite’, Science 221, 651–654.

    Article  ADS  Google Scholar 

  • Bogard, D.D., and Garrison, D.H.: 1998, `Relative Abundances of Argon, Krypton, and Xenon in the Martian Atmosphere as Measured in Martian Meteorites’, Geochim. Cosmochim. Acta 62, 1829–1835.

    Article  ADS  Google Scholar 

  • Bogard, D.D., and Garrison, D.H.: 1999, `Argon-39-argon-40 “Ages” and Trapped Argon in Martian Shergottites, Chassigny, and Allan Hills 84001’, Met. Planet Sci. 34, 451–473.

    Article  ADS  Google Scholar 

  • Bogard, D.D., Hörz, F., and Johnson, P.: 1986, `Shock-implanted Noble Gases: An Experimental Study with Implications for the Origin of Martian Gases in Shergottite Meteorites’, J. Geophys. Res. 91 suppl., 99–114.

    Google Scholar 

  • Can, M.H.: 1986, `Mars: A water-rich Planet?’, Icarus 68, 187–216.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1996, Water on Mars, Oxford Univ. Press, New York.

    Google Scholar 

  • Carr, M.H.: 1999, `Retention of an Atmosphere on Early Mars’, J. Geophys. Res. 104, 21,89721,909.

    Google Scholar 

  • Clayton, R.N., and Mayeda, T.K.: 1984, `The Oxygen Isotope Record in Murchison and Other Carbonaceous Chondrites’, Earth Planet. Sci. Lett. 67, 151–161.

    Article  ADS  Google Scholar 

  • Clayton, R.N., Mayeda, T.K., and Hurd, J.M.: 1974, `Loss of Oxygen, Silicon, Sulfur and Potassium from the Lunar Regolith’, Geochim. Cosmochim. Acta Suppl. 5, 1801–1809.

    Google Scholar 

  • Crider, D.H. 2000, `Evidence of Electron Impact Ionization in the Magnetic Pile-up Boundary of Mars’, Geophys. Res. Lett. 27, 45–48.

    Google Scholar 

  • Donahue, T.M.: 1986, `Fractionation of Noble Gases by Thermal Escape from Accreting Planetesimals’, Icarus 66, 195–210.

    Article  ADS  Google Scholar 

  • Drake, M.J., Swindle, T.D., Owen, T., and Musselwhite, D.S.: 1994, `Fractionated Martian Atmosphere in the Nakhlites?’, Meteoritics 29, 854–859.

    Article  ADS  Google Scholar 

  • Farquhar, J., Thiemens, M.H., and Jackson, T.: 1998, `Atmosphere-surface Interactions on Mars: 5170 Measurements of Carbonate from ALH 84001’, Science 280, 1580–1582.

    Article  ADS  Google Scholar 

  • Farquhar, J., Bao, H., and Thiemens, M.H.: 2000a, `Atmospheric Influence of Earth’s Earliest Sulfur Cycle’, Science 289, 756–758.

    Google Scholar 

  • Farquhar, J., Savarino, J., Jackson, T.L. and Thiemens, M.H.: 2000b, `Evidence of Atmospheric Sulphur in the Martian Regolith from Sulphur Isotopes in Meteorites’, Nature 404, 50–52.

    Article  ADS  Google Scholar 

  • Fox, J.L.: 1993, `On the Escape of Oxygen and Hydrogen from Mars’, Geophys. Res. Lett. 20, 1847.

    Article  Google Scholar 

  • Fox, J.L.: 1997, `Upper Limits to the Outflow of Ions at Mars: Implications for Atmospheric Evolution’, Geophys. Res. Lett. 24, 2901.

    Article  ADS  Google Scholar 

  • Fox, J.L., and Hac, A.: 1997, `The 15N/14N Isotope Fractionation in Dissociative Recombination of Nz ’, J. Geophys. Res. 102, 9191–9204.

    Article  ADS  Google Scholar 

  • Garrison, D.H., and Bogard, D.D.: 1998, `Isotopic Composition of Trapped and Cosmogenic Noble Gases in Several Martian Meteorites’, Met. Planet. Sci. 33, 721–736.

    Article  ADS  Google Scholar 

  • Garrison, D.H., and Bogard, D.D.: 2000, `Cosmogenic and Trapped Noble Gases in the Los Angeles Martian Meteorite’, Met. Planet. Sci. 35, A58 (abstract).

    Article  Google Scholar 

  • Geiss, J., and Reeves, H.: 1981, `Deuterium in the Solar System’, Astron. Astrophys. 93, 189–199.

    ADS  Google Scholar 

  • Gilmour, J.D., Whitby, J.A., and Turner, G.: 1998, `Xenon Isotopes in Irradiated ALH84001: Evidence for Shock-induced Trapping of Ancient Martian Atmosphere’, Geochim. Cosmochim. Acta 62, 2555–2571.

    Article  ADS  Google Scholar 

  • Gilmour, J.D., Whitby, J.A., and Turner, G.: 1999, `Martian Atmospheric Xenon Contents of Nakhla Mineral Separates: Implications for the Origin of Elemental Mass Fractionation’, Earth Planet. Sci. Lett. 166, 139–147.

    Article  ADS  Google Scholar 

  • Gilmour, J.D., Whitby, J.A., and Turner, G.: 2001, `Disentangling Xenon Components in Nakhla: Martian Atmosphere, Spallation and Martian Interior’, Geochim. Cosmochim. Acta 65, 343–354.

    Article  ADS  Google Scholar 

  • Greeley, R.: 1987, `Release of Juvenile Water on Mars: Estimated Amounts and Timing Associated with Volcanism’, Science 236, 1653–1654.

    Article  ADS  Google Scholar 

  • Greeley, R., and Schneid, B.D.: 1991, `Magma Generation on Mars: Amounts, Rates and Comparisons with Earth, Moon and Venus’, Science 254, 996–998.

    Article  ADS  Google Scholar 

  • Greenwood, J.P., Riciputti, L.R. and McSween, H.Y., Jr.: 1997, `Sulfide Isotopic Compositions in Shergottites and ALH 84001, and Possible Implications for Life on Mars’, Geochim. Cosmochim. Acta 61, 4449–4454.

    Article  ADS  Google Scholar 

  • Hartmann, W.K., Anguita, J., de la Casa, M.A., Berman, D.C., and Ryan, E.V.: 2001, `Martian Impact Cratering 7: The Role of Impact Gardening’, Icarus 149, 37–53.

    Article  ADS  Google Scholar 

  • Holland, G., Lyon, I.C., Saxton, J.M., and Turner, G.: 2000, `Very Low Oxygen-isotopic Ratios in Allan Hills 84001 Carbonates: a Possible Meteoritic Component?’, Met. Planet. Sci. 35, A76–A77.

    Google Scholar 

  • Humayun, M., and Clayton, R.N.: 1995, `Potassium Isotope Cosmochemistry: Genetic Implications of Volatile Element Depletion’, Geochim. Cosmochim. Acta 59, 2131–2148.

    Article  ADS  Google Scholar 

  • Hunten, D.M., Pepin, R.O., and Walker, J.C.G.: 1987, `Mass Fractionation in Hydrodynamic Escape’, Icarus 69, 532–549.

    Article  ADS  Google Scholar 

  • Hutchins, K.S., and Jakosky, B.M.: 1996, `Evolution of Martian Atmospheric Argon: Implications for Sources of Volatiles’, J. Geophys. Res. 101, 14,933–14,949.

    Google Scholar 

  • Jakosky, B.M.: 1991, `Mars Volatile Evolution: Evidence from Stable Isotopes’, Icarus 94, 14. Jakosky, B.M.: 1993, `Mars Volatile Evolution: Implications of the Recent Measurement of 170 in Water from the SNC Meteorites’, Geophys. Res. Lett. 20, 1591–1594.

    Article  ADS  Google Scholar 

  • Jakosky, B.M., and Jones, J.H.: 1997, `The History of Martian Volatiles’, Rev. Geophys. 35, 1–16. Jakosky, B.M., Pepin, R.O., Johnson, R.E., and Fox, J.L.: 1994, `Mars Atmospheric Loss and Isotopic Fractionation by Solar-wind-induced Sputtering and Photochemical Escape’, Icarus 111, 271–281.

    Article  ADS  Google Scholar 

  • Karlsson, H.R., Clayton, R.N., Gibson, E.K., Jr., and Mayeda, T.K.: 1992, `Water in SNC Meteorites: Evidence for a Martian Hydrosphere’, Science 255, 1409–1411.

    Article  ADS  Google Scholar 

  • Kass, D.M., and Yung, Y.L.: 1995, `Loss of Atmosphere from Mars due to Solar Wind-Induced Sputtering’, Science 268, 697.

    Article  ADS  Google Scholar 

  • Kent, A.J.R., Hutcheon, I.D., Ryerson, F.J., and Phinney, D.L.: 2001, `The Temperature of Formaion of Carbonate in Martian Meteorite ALH84001: Constraints from Cation Diffusion’, Geochim. Cosmochim. Acta 65, 311–321.

    Article  ADS  Google Scholar 

  • Kieffer, H.H., Jakosky, B.M., and Snyder, C.W.: 1992, `The Planet Mars: From Antiquity to the Present’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews, (eds.), Mars, Univ. Arizona Press, Tucson, pp. 1–33.

    Google Scholar 

  • Krasnopolsky, V.A., Bjoraker, G.L., Mumma, M.J., and Jennings, D.E.: 1997, `High Resolution Spectroscopy of Mars at 3.7 and 8 µm: A Sensitive Search for H202, H2CO, HC1 and CH4, and Detection of HDO’, J. Geophys. Res. 102, 6524–6534.

    ADS  Google Scholar 

  • Lammer, H., and Bauer, S.J.: 1991, Non-thermal Atmospheric Escape from Mars and Titan’, J. Geophys. Res. 96, 1819.

    Article  ADS  Google Scholar 

  • Leshin, L.A.: 2000, `Insights into Martian Water Reservoirs from Analysis of Martian Meteorite QUE 94201’, Geophys. Res. Lett. 27, 2017–2020.

    Article  ADS  Google Scholar 

  • Leshin, L.A., Epstein, S., and Stolper, E.M.: 1996, `Hydrogen Isotope Geochemistry of SNC Meteorites’, Geochim. Cosmochim. Acta 60, 2635–2650.

    Article  ADS  Google Scholar 

  • Leshin, L.A., McKeegan, K.D., Carpenter, P.K., and Harvey R.P.: 1998, `Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH 84001’, Geochim. Cosmochim. Acta 62, 3–13.

    Article  ADS  Google Scholar 

  • Luhman, J.G.: 1997, `Correction to “The Ancient Oxygen Exosphere of Mars: Implications for Atmosphere Evolution”, by Zhang J. Geophys. Res. 102, 1637.

    Google Scholar 

  • Luhmann, J.G., Johnson, R.E., and Zhang, M.H.G.: 1992, `Evolutionary Impact of Sputtering of the Martian Atmosphere by 0+ Pick-up Ions’, Geophys. Res. Lett. 19, 2151.

    Article  ADS  Google Scholar 

  • Lundin, R., 1989, `First Measurements of the Ionsphere Plasma Escape from Mars’, Nature 341, 609.

    Google Scholar 

  • Lundin, R., 1990, `Aspera/Phobos Measurements of the Ion Outflow from the Martian Atmosphere’, Geophys. Res. Lett. 17, 873–876.

    Google Scholar 

  • Marti, K., and Mathew, K.J.: 2000, `Ancient Martian Nitrogen’, Geophys. Res. Lett. 27, 1463–1466.

    Article  ADS  Google Scholar 

  • Marti, K., Kim, J.S., Thakur, A.N., McCoy, T.J., and Keil, K.: 1995, `Signatures of the Martian Atmosphere in Glass of the Zagami Meteorite’, Science 267, 1981–1984.

    Article  ADS  Google Scholar 

  • Masson, P., Can, M.H., Costard, F., Greeley, R., Hauber, E., and Jaumann, R.: 2001, ‘Geomorphologic Evidence for Liquid Water’, Space Sci. Rev., this volume.

    Google Scholar 

  • Mathew, K.J., and Marti, K.: 2001, `Early Evolution of Martian Volatiles: Nitrogen and Noble Gas Components in ALH84001 and Chassigny’, J. Geophys. Res., 106, 1401–1422.

    Article  ADS  Google Scholar 

  • Mathew, K.J., Kim, J.S., and Marti, K.: 1998, `Martian Atmospheric and Indigenous Components of Xenon and Nitrogen in the Shergotty, Nakhla, and Chassigny Group Meteorites’, Met. Planet. Sci. 33, 655–664.

    Article  ADS  Google Scholar 

  • McElroy, M.B., Kong, T.Y., Yung, Y.L., and Nier, A.O.: 1976, `Composition and Structure of the Martian Upper Atmosphere. Analysis of Results from Viking’, Science, 194, 1295–1298.

    Article  ADS  Google Scholar 

  • McElroy, M.B., Kong, T.Y., and Yung, Y.L.: 1977, `Photochemistry and Evolution of Mars’ Atmosphere: A Viking Perspective’, J. Geophys. Res. 82, 4379–4388.

    Article  ADS  Google Scholar 

  • McSween, H.Y.: 1985, `SNC Meteorites: Clues to Martian Petrologic Evolution?’ Rev. Geophys. 23, 391–416.

    Article  ADS  Google Scholar 

  • Meier, R., and Owen, T.: 1999, `Cometary Deuterium’, Space Sci. Rev 90, 33–43.

    Article  ADS  Google Scholar 

  • Melosh, H.J., and Vickery, A.M.: 1989, `Impact Erosion of the Primordial Atmosphere of Mars’, Nature 338, 487–489.

    Article  ADS  Google Scholar 

  • Mittlefehldt, D.W.: 1994, ALH84001, a Cumulate Orthopyroxenite Member of the Martian Meteorite Clan’, Meteoritics 29, 214–221.

    Article  ADS  Google Scholar 

  • Miura, Y.N., Nagao, K., Sugiura, N., Sagawa, H., and Matsubara, K.: 1995, `Orthopyroxene ALH84001 and Shergottite ALH7705: Additional Evidence for a Martian Origin from Noble Gases’, Geochiin. Cosmochim. Acta 59, 2105–2113.

    Google Scholar 

  • Mohapatra, R.K., and Ott, U.: 2000, `Trapped Noble Gases in Sayh al Uhaymir 005: A new Martian Meteorite from Oman’, Met. Planet. Sci. 35, A113 (abstract).

    Google Scholar 

  • Murty, S.V.S., and Mohapatra, R.K.,: 1997, `Nitrogen and Heavy Noble Gases in ALH84001: Signature of Ancient Martian Atmosphere’, Geochim. Cosmochim. Acta 61, 5417–5428.

    Article  ADS  Google Scholar 

  • Musselwhite, D.S., and Drake, M.J.: 2000, `Early Outgassing of Mars: Implications from Experimentally Determined Solubility of Iodine in Silicate Magmas’, Icarus 148, 160–175.

    Article  ADS  Google Scholar 

  • Musselwhite, D.M., Drake, M.J., and Swindle, T.D.: 1991, `Early Outgassing of Mars Supported by Differential Water Solubility of Iodine and Xenon’, Nature 352, 697–699.

    Article  ADS  Google Scholar 

  • Nier, A., and McElroy, M.B.: 1977, `Composition and Structure of Mars’ Upper Atmosphere: Results from the Neutral Mass Spectrometers at Viking 1 and 2’, J. Geophys. Res. 82, 4341–4350.

    Article  ADS  Google Scholar 

  • Notesco, G., Laufer, D., Bar-Nun, A., and Owen, T.: 1999, `An Experimental Study of the Isotopic Enrichment in Ar, Kr, and Xe when Trapped in Water Ice’, Icarus 142, 298–300.

    Article  ADS  Google Scholar 

  • Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stöffler, D., and Eugster, 0.: 2001, `Ages and Geologic Histories of Martian Meteorites’, Space Sci. Rev., this volume. Ohmoto, H.: 1986, `Stable Isotope Geochemistry of Ore Deposits’, in J.W. Valley, H.P. Taylor, J.R. O’Neil (eds.), Stable Isotopes in High Temperature Geological Processes, Rev. Mineral. 16, Mineral. Soc. Am., Washington, pp. 491–560.

    Google Scholar 

  • Ott, U.: 1988, `Noble Gases in SNC Meteorites: Shergotty, Nakhla, Chassigny’, Geochim. Cosmochim. Acta 52, 1937–1948.

    Article  ADS  Google Scholar 

  • Ott, U., and Begemann, F.: 1985, `Are All the `Martian’ Meteorites from Mars?’, Nature 317, 509–512.

    Article  ADS  Google Scholar 

  • Owen, T.: 1992, `The Composition and Early History of the Atmosphere of Mars’, in H.H. Kieffer, Mars,Univ. Arizona Press, Tucson, pp. 818–834.

    Google Scholar 

  • Owen, T.: 1997, `From Planetesimals to Planets: Contributions of Icy Planetesimals to Planetary Atmospheres’, in Y.J. Pendleton and A.G.G.M. Tielens (eds.), From Stardust to Planetesimals, Astron. Soc. Pac. Conf. Ser. 122, 435–450.

    Google Scholar 

  • Owen, T., and Bar-Nun, A.: 1995a, `Comets, Impacts, and Atmospheres’, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Owen, T., and Bar-Nun, A.: 1995b, `Comets, Impacts, and Atmospheres II, Isotopes and Noble Gases’, in K. Farley (ed.), Volatiles in the Earth and Solar System AIP Conf. Proc. 34, pp. 123–128.

    Chapter  Google Scholar 

  • Owen, T., and Bar-Nun, A.: 1998, `From the Interstellar Medium to Planetary Atmospheres via Comets’, Chemistry and Physics of Molecules and Grains in Space, Faraday Discussions 109, Roy. Soc. Chem., London, p. 453.

    Google Scholar 

  • Owen, T., and Bar-Nun, A.: 2000, `Volatile Contributions from Icy Planetesimals’, in R. Canup and

    Google Scholar 

  • K. Righter (eds.), Origin of the Earth and Moon,Univ. Arizona Press, pp. 459–471.

    Google Scholar 

  • Owen,T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W., and Lafleur, A.L.: 1977, `The

    Google Scholar 

  • Composition of the Atmosphere at the Surface of Mars’, J. Geophys. Res. 82, 4635–4639. Owen, T., Maillard, J.P., de Bergh, C., and Lutz, B.L.: 1988, Science 240, 1767.

    Google Scholar 

  • Ozima, N., and Podosek, F.A.: 1983, Noble Gas Geochemistry, Cambridge Univ. Press, 367 pp. Pepin, R.O.: 1991, `On the Origin and Early Evolution of Terrestrial Planet Atmospheres and Meteoritic Volatiles’, Icarus 92, 2–79.

    Google Scholar 

  • Pepin, R.O.: 1994, `Evolution of the Martian Atmosphere’, Icarus 111, 289–304.

    Article  ADS  Google Scholar 

  • Pepin, R.O.: 1997, `Evolution of Earth’s Noble Gases: Consequences of Assuming Hydrodynamic Loss Driven by Giant Impact’, Icarus 126, 148–156.

    Article  ADS  Google Scholar 

  • Pepin, R.O., Becker, R.H., and Rider, P.E.: 1995, `Xenon and Krypton Isotopes in Extraterrestrial Regolith Soils and in the Solar Wind’, Geochim. Cosmochim. Acta 59, 4997–5022.

    Article  ADS  Google Scholar 

  • Porcelli, D., and Wasserburg, G.J.: 1995, `Mass Transfer of Xenon through a Steady-state Upper Mantle’, Geochim. Cosmochim. Acta 59, 1991–2007.

    Article  ADS  Google Scholar 

  • Rieder, R., Economou, T., Wanke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G. and McSween, H.Y.: 1997, `The Chemical Compositions of Martian Soil and Rocks returned by the mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode’, Science 278, 1771–1774.

    Google Scholar 

  • Robert, F., and Epstein, S.: 1982, `The Concentration and Isotopic Composition of Hydrogen, Carbon, and Nitrogen in Carbonaceous Chondrites’, Geochim. Cosmochim. Acta 46, 81–95.

    Article  ADS  Google Scholar 

  • Romanek, C.S., Grady, M.M., Wright, I.P., Mittlefehldt, D.W., Socki, R.A., Pillinger, C.T., and Gibson, E.K., Jr.: 1994, `Record of Fluid-rock Interactions on Mars from the Meteorite ALH 84001’, Nature 372, 655–657.

    Google Scholar 

  • Saxton, J.M., Lyon, I.C., and Turner, G.: 1998, `Correlated Chemical and Isotopic Zoning in Carbonates in the Martian Meteorite ALH84001’, Earth Planet. Sci. Lett. 160, 811–822.

    Article  ADS  Google Scholar 

  • Scambos, T.A., and Jakosky, B.M.: 1990, `An Outgassing Release Factor for Nonradiogenic Volatiles on Mars’, J. Geophys. Res. 95, 14,779–14,787.

    Google Scholar 

  • Schubert, G., and Spohn, T.: 1990, `Thermal History of Mars and the Sulfur Content of its Core’, J. Geophys. Res. 95, 14,095–14, 104.

    Google Scholar 

  • Shearer, C.K., Layne, G.D., Papike, J.J., and Spilde, M.N.: 1996, `Sulfur Isotope Systematics in Alteration Assemblages in Martian Meteorite Allan Hills 84001’, Geochim. Cosmochim. Acta 60, 2921–2928.

    Article  ADS  Google Scholar 

  • Shukolyukov, Y.A., Nazarov, M.A., and Schultz, L.: 2000, `Dhofar 019: A Shergottite with an Approximate 20-million-year Exposure Age’, Met. Planet Sci. 35, A147 (abstract).

    Google Scholar 

  • Swindle, T.D., and Jones, J.H.: 1997, `The Xenon Isotopic Composition of the Primordial Martian Atmosphere: Contributions from Solar and Fission Components’, J. Geophys. Res. 102, 1671–1678.

    Article  ADS  Google Scholar 

  • Swindle, T.D., Caffee, M.W., and Hohenberg, C.M.: 1986, `Xenon and Other Noble Gases in Shergottites’, Geochim. Cosmochim. Acta 50, 1001–1015.

    Article  ADS  Google Scholar 

  • Swindle, T.D., Grier, J.A., and Burkland, M.K.: 1995, `Noble Gases in Orthopyroxenite ALH84001: A Different Kind of Martian Meteorite with an Atmospheric Signature’, Geochim. Cosmochim. Acta 59, 793–801.

    Article  ADS  Google Scholar 

  • Terribilini, D., Eugster, O., Burger, M., Jakob, A., and Krähenbühl, U.: 1998, `Noble Gases and Chemical Composition of Shergotty Mineral Fractions, Chassigny, and Yamato 793605: The Trapped Argon-40/argon-36 Ratio and Ejection Times of Martian Meteorites’, Met. Planet Sci. 33, 677–684.

    Article  ADS  Google Scholar 

  • Thiemens, M.H., Jackson, T.L., and Brenninkmeijer, C.A.M.: 1995, `Observation of a Mass Independent Oxygen Isotopic Composition in Terrestrial Atmospheric CO2, the Link to Ozone Chemistry, and the Possible Occurrence in the Martian Atmosphere’, Geophys. Res. Lett. 22, 255–257.

    Article  ADS  Google Scholar 

  • Treiman, A.H., Gleason, J.D., and Bogard, D.D.: 2000, `The SNC Meteorites are from Mars’, Planet. Space Sci. 48, 1213–1230.

    Article  ADS  Google Scholar 

  • Turner, G., Knott, S.F., Ash, R.D., and Gilmour, J.D.: 1997, `Ar-Ar Chronology of the Martian Meteorite ALH84001: Evidence for the Timing of the Early Bombardment of Mars’, Geochim. Cosmochim. Acta 61, 3835–3850.

    Article  ADS  Google Scholar 

  • Valley, J.W., Eller, J.M., Graham, C.M., Gibson, E.K., Romanek, C.S. and Stolper, E.M.: 1997, `Low-temperature Carbonate Concretions in the Martian Meteorite ALH 84001: Evidence from Stable Isotopes and Mineralogy’, Science 275, 1633–1638.

    Article  ADS  Google Scholar 

  • Wänke, H., and Dreibus, G.: 1988, `Chemical Compositions and Accretion History of Terrestrial Planets’, Phil. Trans. Roy. Soc. Lond. A325, 545–557.

    Article  ADS  Google Scholar 

  • Watson, L.L., Hutcheon, J.D., Epstein, S. and Stolper, E.M.: 1994, `Water on Mars: Clues from Deuterium/hydrogen and Water Contents of Hydrous Phases in SNC Meteorites’, Science 265, 86–90.

    Article  ADS  Google Scholar 

  • Wiens, R.C.: 1988, `Noble Gases Released by Vacuum Crushing of EETA79001 Glass’, Earth Planet. Sci. Lett. 91, 55–65.

    Article  ADS  Google Scholar 

  • Wiens, R.C., and Pepin, R.O.: 1988, `Laboratory Shock Emplacement of Noble Gases, Nitrogen, and Carbon Dioxide into Basalt, and Implications for Trapped Gases in Shergottite EETA79001’, Geochim. Cosmochim. Acta 52, 295–307.

    Article  ADS  Google Scholar 

  • Wiens, R.C., Becker, R.H., and Pepin, R.O.: 1986, `The Case for a Martian Origin of the Shergottites, II. Trapped and Indigeneous Gas Components in EETA79001 Glass’, Earth Planet Sci. Lett. 77, 149–158.

    Article  ADS  Google Scholar 

  • Yung, Y.L., Wen, J.S., Pinto, J.P., Allen, M., Pierce, K., and Paulom, S.: 1988, ‘HDO in the Martian Atmosphere: Implications for the Abundance of Crustal Water’, Icarus 76, 146.

    Article  ADS  Google Scholar 

  • Zakharov, A.V.: 1992, `The Plasma Environment of Mars: Phobos Mission Results’, AGU Geophys. Monograph 66, 327.

    Article  Google Scholar 

  • Zhang, M.H.G., Luhmann, G., Bougher, S.W., and Nagy, A.F.J.: 1993, `The Ancient Oxygen Exosphere of Mars: Implications for Atmospheric Evolution’, Geophys. Res. 98, 10915.

    Article  ADS  Google Scholar 

  • Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L.: 2000, `Petrology and Chemistry of the new Shergottite Dar al Gani 476’, Met. Planet. Sei. 35, 95–106.

    Google Scholar 

  • Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L.: 2000, `Petrology and Chemistry of the new Shergottite Dar al Gani 476’, Met. Planet. Sei. 35, 95–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Bogard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bogard, D.D., Clayton, R.N., Marti, K., Owen, T., Turner, G. (2001). Martian Volatiles: Isotopic Composition, Origin, and Evolution. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds) Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1035-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5725-9

  • Online ISBN: 978-94-017-1035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics