Skip to main content

Sex Chromosome Evolution: Evidence from Fish, Fly and Moth Species

  • Conference paper
Chromosomes Today
  • 211 Accesses

Abstract

In several plant taxa and in many animal taxa, one chromosome pair controls the development to a female or a male. This is commonly referred to as “chromosomal sex determination”. One or more genes for the primary sex determining signal are located on these chromosomes but even if multiple genes are involved, they are transmitted as a single unit through meiosis. The sex determining mechanism, therefore, is formally “monofactorial” in terms of transmission genetics, it follows the Mendelian backcross scheme and produces a primary 1:1 ratio of females: males among offspring. Chromosomal sex determination is of two types, XX/XY or WZ/ZZ, depending on whether females or males are the heterogametic sex, but otherwise there is no basic difference between the two. There are variants of both types e.g. XX/X, X1X1X2X2/X1X2Y, XX/XY1Y2, Z/ZZ, W1W2Z/ZZ and even more complex systems. But even multiple sex chromosomes segregate as a single unit in meiosis of the heterogametic sex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Kanehara M, Terada T, Ohbayashi F, Shimada T, Kawai S, Suzuki M, Sugasaki T, Oshiki T (1998). Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotranspo sable element-related nucleotide sequences. Genes Genet Syst 73: 243–254.

    CAS  Google Scholar 

  • Abe H, Shimada T, Kawai S, Ohbayashi F, Harada T, Yokoyama T, Oshiki T, Kobayashi M (1996). Nucleotide sequence of the random amplified polymorphic DNA (RAPD) on the W chromosome of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 31: 633–637.

    CAS  Google Scholar 

  • Bull JJ (1983). Evolution of Sex Determining Mechanisms. Menlo Park: The Benjamin/ Cummings Publishing Company.

    Google Scholar 

  • Charlesworth B (1994). The effect of background selection against deleterious alleles on weakly selected, linked variants. Genet Res 63: 213–228.

    Article  PubMed  CAS  Google Scholar 

  • Dübendorfer A, Hilfiker-Kleiner D, Nöthiger R (1992). Sex determination mechanisms in dipteran insects: the case of Musca domestica. Develop Biol 3: 349–356.

    Google Scholar 

  • Grossman AI, Short RB, Cain GD (1981). Karyotype evolution and sex chromosome differen-tiation in Schistosomes (Trematoda, Schistosomatidae). Chromosoma 84: 413–430.

    Article  PubMed  CAS  Google Scholar 

  • Kallman KD (1984). A new look at sex determination in poeciliid fishes. In: Turner BJ, ed. Evolutionary Genetics of Fishes. New York: Plenum Press, pp. 95–171.

    Chapter  Google Scholar 

  • Kirpičnikov VS (1987). Genetische Grundlagen der Fischzüchtung. Berlin: VEB Deutscher Landwirtschaftsverlag.

    Google Scholar 

  • Kjellman C, Sjögren H-O, Widegren B (1995). The Y chromosome: a graveyard for endogenous retroviruses. Gene 161: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer C, Schmidt ER (1993). The sex determining region of Chironomus thummi is associated with highly repetitive DNA and transposable elements. Chromosoma 102: 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (1999). Four evolutionary strata on the human X chromosome. Science 286: 964–967.

    Article  PubMed  CAS  Google Scholar 

  • Lukhtanov VA (2000). Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J Zool Syst Evol Res 38: 73–79.

    Article  Google Scholar 

  • Muller HJ (1964). The relation of recombination to mutational advance. Mutation Res 1: 2–9.

    Article  Google Scholar 

  • Rice WR (1987a). The accumulation of sexually antagonistic genes as a selective agent pro-moting the evolution of reduced recombination between primitive sex chromosomes. Evolution 4: 911–914.

    Article  Google Scholar 

  • Rice WR (1987b). Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116: 161–167.

    PubMed  CAS  Google Scholar 

  • Rubini PG, Vecchi M, Franco MG (1983). Recenti progressi nello studio delle variazioni dei determinanti sessuali in popolazioni naturali di Musca domestica L. Atti 13 Congr. Nat. It. Ent. Sestriere–Torino, pp. 527–534.

    Google Scholar 

  • Stebbins GL (1971). Chromosomal Evolution in Higher Plants. London: Arnold.

    Google Scholar 

  • Steinemann M, Steinemann S (1997). The enigma of Y chromosome degeneratiom: TRAM, a novel retroposon is preferentially located on the neo-Y chromosome of Drosophila miranda. Genetics 145: 261–266.

    CAS  Google Scholar 

  • Steinemann M, Steinemann S, Lottspeich F (1993). How Y chromosomes become genetically inert. Proc Natl Acad Sci USA 90: 5, 737–5, 741.

    Google Scholar 

  • Suck G (2000). Geschlechtsspezifische und mobile Sequenzen bei der Fliege Megaselia scalaris ( Diptera ), Medizinische Universität Lübeck.

    Google Scholar 

  • Syren RM, Luykx P (1981). Geographic variation of sex-linked translocation heterozygosity in the termite Kalotermes approximatus Snyder (Insecta: Isoptera). Chromosoma 82: 62–88.

    Article  Google Scholar 

  • Traut W (1994). Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution. Genetics 136: 1, 097–1, 104.

    Google Scholar 

  • Traut W, Clarke CA (1997). Karyotype evolution by chromosome fusion in the moth genus Orgyia. Hereditas 126: 77–84.

    Article  Google Scholar 

  • Traut W, Eickhoff U, Schorch J-C (2001). Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH). In: Sharma AK, Sharma A, Eds. Methods in Cell Science. Kluwer Academic.

    Google Scholar 

  • Traut W, Marec F (1996). Sex chromatin in Lepidoptera. Quart Rev Biol 71: 239–256.

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Sahara K, Otto TD, Marec F (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Winking H (2001). Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res (in press).

    Google Scholar 

  • Traut W, Wollert B (1998). An X/Y DNA segment from an early stage of sex chromosome differentiation in the fly Megaselia scalaris. Genome 41: 289–294.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Traut, W. (2004). Sex Chromosome Evolution: Evidence from Fish, Fly and Moth Species. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics