Skip to main content

DMRT Genes and Sex Determination in Medaka

  • Conference paper
Chromosomes Today

Abstract

The vast majority of animal species are bisexual, and in many cases the decision, if an embryo develops to a male or female, is made by the genome. Sex determination genes initiate a series of developmental processes that establish the male or female phenotype. The genetic scenarios how sex can be determined are of extraordinary diversity and have provoked questions on the evolution and maintenance of bisexuality. One of the unsolved problem is, why such a simple and highly conserved biological phenomenon as the existence of males and females should be controlled by so different mechanisms like the ratio of X chromosomes to autosomes for instance in the fruit fly Drosophila melanogaster and the worm Caenorhabditis elegans or the presence of a Y chromosome in male mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amores A, Force A, Yan YL, et al (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1, 711–1, 714.

    Google Scholar 

  • Baroiller JF (1999). Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci 55: 910–913.

    Article  CAS  Google Scholar 

  • Brunner B, Hornung U, Shan Z, et al (2001). Genomic organization and expression of the double sex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 77: 8–17.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1991). The evolution of sex chromosomes. Science 251: 1, 030–1, 033.

    Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S, et al (1994). Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372: 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Fukada S, Tanaka M, Iwaya M, Nakajima M, Nagahama Y (1995). The SOX gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Dev Growth Differ 37: 379–385.

    Article  CAS  Google Scholar 

  • Guan G, Kobayashi T, Nagahama Y (2000). Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus). Biochem Biophys Res Commun 272: 662–666.

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi S, Sakaizumi M (1992). Sexually differentiated mechanisms of sterility in inter-specific hybrids between Oryzias latipes and O. curvinotus. J Exp Zool 263: 323–329.

    Article  CAS  Google Scholar 

  • Just W, Rau W, Vogel W, et al (1995). Absence of Sry in species of the vole Ellobius. Nat Genet 11: 117–118.

    Article  PubMed  CAS  Google Scholar 

  • Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996). A male-specific role for SOX9 in vertebrate sex determination. Development 122: 2, 813–2, 822.

    Google Scholar 

  • Kettlewell JR, Raymond CS, Zarkower D (2000). Temperature-dependent expression of turtle Dmrt1 prior to sexual differentiation. Genesis 26: 174–178.

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Nagao E, Mitani H, Shima A (2001). Differences in recombination frequencies during female and male meioses of the sex chromosomes of the medaka, Oryzias latipes. Genet Res 78: 23–30.

    CAS  Google Scholar 

  • Koopman P (2001). The genetics and biology of vertebrate sex determination. Cell 105: 843–847.

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Pearson NM, Jegalian K (2001). The human Y chromosome, in the light of evolution. Nat Rev Genet 2: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Mansour S, Hall CM, Pembrey ME, Young ID (1995). A clinical and genetic study of campomelic dysplasia. J Med Genet 32: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Marchand O, Govoroun M, D’Cotta H, et al. (2000). DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta 1493: 180–187.

    Google Scholar 

  • Marin I, Baker BS (1998). The evolutionary dynamics of sex determination. Science 281: 1, 990–1, 994.

    Google Scholar 

  • Matsuda M, Matsuda C, Hamaguchi S, Sakaizumi M (1998). Identification of the sex chromosomes of the medaka, Oryzias latipes, by fluorescence in situ hybridization. Cytogenet Cell Genet 82: 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Sotoyama S, Hamaguchi S, Sakaizumi M (1999). Male-specific recombination frequency in the sex chromosomes of the medaka, Oryzias latipes. Genet Res 73: 225–231.

    Article  Google Scholar 

  • Meyer A, Schartl M (1999). Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish). rule and the evolution of novel gene functions. Curr Opin Cell Biol 11: 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Moniot B, Berta P, Scherer G, Sudbeck P, Poulat F (2000). Male specific expression suggests role of DMRT1 in human sex determination. Mech Dev 91: 323–325.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Shan Z, Schartl M, et al. (1999). 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat Genet 21: 258–259.

    Google Scholar 

  • Nanda I, Zend-Ajusch E, Shan Z, et al (2000). Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. Cytogenet Cell Genet 89: 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Fukamachi S, Mitani H, et al (2000). A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154: 1, 773–1, 784.

    Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, et al (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10: 1, 890–1, 902.

    Google Scholar 

  • Raymond CS, Shamu CE, Shen MM, et al (1998). Evidence for evolutionary conservation of sex-determining genes. Nature 391: 691–695.

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Parker ED, Kettlewell JR, et al (1999a). A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 8: 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D (1999b). Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215: 208–220.

    Article  PubMed  CAS  Google Scholar 

  • Shan Z, Nanda I, Wang Y, Schmid M, Vortkamp A, Haaf T (2000). Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Cytogenet Cell Genet 89: 252–257.

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH (1999). Conservation of a sex-determining gene. Nature 402: 601–602.

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Shimada A, Fukamachi S, Naruse K, Shima A (1998). Sex-linked inheritance of the lf locus in the medaka fish (Oryzias latipes). Zool Sci 15: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Wagner T, Wirth J, Meyer J, et al (1994). Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79: 1, 111–1, 120.

    Google Scholar 

  • Western PS, Harry JL, Graves JA, Sinclair AH (1999). Temperature-dependent sex determination: upregulation of SOX9 expression after commitment to male development. Dev Dyn 214: 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998). More genes in fish? Bioessays 20: 511–515. Wittbrodt J, Meyer A, Schartl M (2002). Medaka–a model organism from the far east. Nat Rev Genet 3: 53–64.

    Article  Google Scholar 

  • Woods IG, Kelly PD, Chu F, et al (2000). A comparative map of the zebrafish genome. Genome Res 10: 1, 903–1, 914.

    Google Scholar 

  • Yamamoto T (1975). Medaka (Killfish): Biology and Strains. Tokyo: Keigaku Publishing Co. Zhu L, Wilken J, Phillips NB, et al. (2000). Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev 14: 1,750–1,764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hornung, U. et al. (2004). DMRT Genes and Sex Determination in Medaka. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics