Skip to main content

The EVO-DEVO of Pericentromeric DNA in the Mouse

  • Conference paper
Chromosomes Today

Abstract

The path from genome to function is becoming shorter and shorter thanks to the flood of sequence data, advanced bioinformatics techniques and new approaches to study genome-wide expression profiling and protein molecules. Today, astonishing as it may seem, the challenge of a molecular understanding of very complex developmental and evolutionary processes seems open.

This chapter is dedicated to the memory of Prof. Alfred Gropp, great cytologist and unforgettable friend, on the occasion of the 31st anniversary of his description of the Mus poschiavinus karyotype. Many of us still have a vivid remembrance of his enthusiasm for biological research and nature. The milestone contributions he made, till his premature death in October 1983 soon after the Luebeck Chromosome Conference, continue to nourish the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. (2000). The genome sequence of Drosophila melanogaster. Science 287: 2, 185–2, 195.

    Google Scholar 

  • Beaton MJ, Cavalier-Smith T (1999). Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonal genomes. Proc R Soc Lond B 266: 2, 053–2, 059.

    Google Scholar 

  • Bennet MD, Leitc IJ (1997). Nuclear DNA amounts in angiosperms –— 583 new estimates. Ann Bot 80: 169–196.

    Article  Google Scholar 

  • Bickmore WA, Bridger JM (1999). A sense of time and place. Chromos Res 7: 425–429.

    Article  CAS  Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993). Characterization of the pufferfish (Fugu) genome as a compact model of vertebrate genome. Nature 366: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000). Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10: 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Britton-Davidian J, Catalan J, da Graca Ramalhinho M, Ganem G, Auffray JC, Capela R, Biscoito M, Searle JB, da Luz Mathias M (2000). Rapid chromosomal evolution in island mice. Nature 403: 158–159.

    Article  PubMed  CAS  Google Scholar 

  • Capanna E, Manfredi Romanini MG (1971). Nuclear DNA content and morphology of the karyotype in certain Paleartic microchiroptera. Caryologia 24: 471–482.

    CAS  Google Scholar 

  • Capanna E, Redi CA (1995). Whole-arm reciprocal translocation (WART) between Robertsonian chromosomes: finding of a Robertsonian heterozygous mouse with karyotype derived through WARTs. Chromos Res 3: 135–137.

    Article  CAS  Google Scholar 

  • C. elegans sequencing consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2,012–2,018.

    Google Scholar 

  • Cerda MC, Berrios S, Fernandez-Donoso R, Garagna S, Redi CA (1999). Organisation of complex nuclear domains in somatic mouse cells. Biol Cell 91: 55–65.

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Claverie JM (2001). What if there are only 30,000 human genes? Science 291: 1, 255–1, 257.

    Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999). Differences in the local-ization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1, 119–1, 131.

    Google Scholar 

  • Dover GA, Brown S, Coen E, Dallas J, Strachan T, Trick M (1982). The dynamics of genome evolution and species differentiation. In: Dover GA and Flavell RB, eds. Genome Evolution. New York: Academic Press, pp. 343–372.

    Google Scholar 

  • Forejt J (1982). X–Y involvement in male sterility caused by autosome translocations–A hypothesis. In: Crosignani PG and Rubin BL, eds. Genetic Control of Gamete Production and Function. New York: Academic Press, pp. 135–151.

    Google Scholar 

  • Garagna S, Redi CA, Zuccotti M, Britton-Davidian J, Winking H (1990). Kinetics of oogene- sis in mice heterozygous for Robertsonian translocations. Differentiation 42: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Redi CA, Capanna E, Andayani N, Alfano RM, Doi P, Viale G (1993). Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995). Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103: 685–692.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Redi CA, Capanna E (1997). Trapping speciation. Nature 390: 241–242.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001). Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci USA 98: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A (2000). Four years of post-genomic life with 6,000 yeast genes. FEBS Lett 480: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2001). Animal Genome Size Database. http://www.genomesize.com

    Google Scholar 

  • Gropp A, Tettenborn U, Lehmann von E (1970). Chromosomenvariation vom Robertsonschen Typus bei der Tabakmaus, M. poschiavinus und ihren Hybriden mit der Laboratoriumsmaus. Cytogenetics 9: 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Gropp A, Winking H, Redi CA, Capanna E, Britton Davidian J, Noack G (1982a). Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenet Cell Genet 34: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Gropp A, Winking H, Redi CA (1982b). Consequences of Robertsonian heterozygosity: segregational impairment of fertility versus male-limited sterility. In: Crosignani PG, Rubin BL, Fraccaro M, eds. Genetic Control of Gamete Production and Function. London–New York: Academic Press, pp. 115–134.

    Google Scholar 

  • Guttenbach M, Martinez Esposito MJ, Engel W, Schmid M (1996). Interphase chromosome arrangement in Sertoli cells of adult mice. Biol Reprod 54: 980–986.

    Article  PubMed  CAS  Google Scholar 

  • Hamkalo BA, Elgin SCR (1991). Functional organization of the nucleus. A laboratory guide. Methods in Cell Biology. New York: Academic Press, p. 35.

    Google Scholar 

  • Hancock JM (1996). Simple sequences and the expanding genome. BioEssays 18: 421–425. Hemann MT, Greider CW (2000). Wild-derived inbred mouse strains have short telomeres. Nucl Acids Res 28: 4,474–4, 478.

    Google Scholar 

  • Hertwig R (1903). Ueber Korrelation von Zell-und Kerngrösse und ihre Bedeutung für die

    Google Scholar 

  • geschlechtliche Differenzierung und die Teilung der Zelle. Biologisches Centralblatt 23: 108–119.

    Google Scholar 

  • Holmquist GP, Comings DE (1975). Sister chromatid exchange and chromosome organization based on a bromodeoxyuridine Giemsa-C-banding technique (TC-banding). Chromosoma 52: 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Hughes MK (1995). Small genomes for better flyers. Nature 377: 391.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman SA (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Kimura M (1968). Evolutionary rate at the molecular level. Nature 217: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • King M (1993). Species Evolution: The Role of Chromosome Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kofman-Alfaro S, Speed RM, Boyle S, Chandley AC (1994). Condensation behaviour of the human X chromosome in male germ cells and Sertoli cells examined by fluorescence in situ hybridization. Chromos Res 2: 439–444.

    Article  CAS  Google Scholar 

  • Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bartova E, Kroha V, Krahulcova E, Slotova J (1999). The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 108: 426–435.

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Earnshaw WC (1998). Structure and function in the nucleus. Science 280: 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1985). The fixation of chromosomal rearrangements in a subdivided population with local extiction and colonization. Heredity 54: 323–332.

    Article  PubMed  Google Scholar 

  • Lander ES (1996). The new genomics: global views of biology. Science 274: 536–539.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K

    Google Scholar 

  • Doyle M, Fitzhugh W, et al. (2001). Initial sequencing and analysis of the human genome.

    Google Scholar 

  • Nature 409: 860–921.

    Google Scholar 

  • Lifschytz E, Lindsley DL (1972). The role of X-inactivation during spermatogenesis. Proc Natl Acad Sci 69: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Lin MS, Davidson RL (1974). Centric fusion, satellite DNA and DNA polarity in mouse chromosomes. Science 185: 1, 179–1, 181.

    Google Scholar 

  • Maleszka R, de Couet HG, Miklos GLC (1998). Data transferability from model organisms to human beings: Insights from the functional genomics of the flightless region of Drosophila. Proc Natl Acad Sci 95: 3, 731–3, 736.

    Google Scholar 

  • Manuelidis L (1997). Interphase chromosome positions and structure during silencing, transcription and replication. In: Van Driel R and Otte AP, eds. Nuclear Organization, Chromatin Structure, and Gene Expression. Oxford: Oxford University Press, pp. 145–168.

    Google Scholar 

  • Meyne J, Goodwin EH, Moyzis RK (1994). Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA. Chromosoma 103: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Miklos GLC (1974). Sex-chromosome pairing and male sterility. Cytogenet Cell Genet 13: 558–577.

    Article  PubMed  CAS  Google Scholar 

  • Miller OJ, Therman E (2001). Human Chromosomes. New York: Springer-Verlag.

    Book  Google Scholar 

  • Misteli T, Spector DL (1998). The cellular organization of gene expression. Curr Opin Cell Biol 10: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Mittwoch U, Mahadevaiah S, Setterfield LA (1984). Chromosome anomalies that cause male sterility in the mouse also reduce ovary size. Genet Res 44: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan P, Metcalfe N (2000). Genome size and longevity. Trends Genet 16: 331–332.

    Article  PubMed  CAS  Google Scholar 

  • Nagele RG, Freeman T, Fazekas J, Lee KM, Thomson Z, Lee HY (1998). Chromosome spatial order in human cells: evidence for early origin and faithful propagation. Hromosoma 107: 330–338.

    Article  CAS  Google Scholar 

  • van der Ploeg M (2000). Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44: 7–42.

    PubMed  Google Scholar 

  • Redi CA, Hilscher B, Winking H (1983). Stage-dependent enzymatic activities in spermatogenesis of mice with the standard karyotype and of chromosomal variants with impaired fertility. Andrologia 15: 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Pellicciari C, Manfredi Romanini MG, Capanna E, Winking H, Gropp A (1984). Spermatozoa of chromosomally heterozygous mice and their fate in male and female genital tracts. Gamete Res 9: 273–286.

    Article  Google Scholar 

  • Redi CA, Garagna S, Hilscher B, Winking H (1985). The effects of some Robertsonian chromosome combinations on the seminiferous epithelium of the mouse. J Embryol Experim Morphol (Development) 85: 1–19.

    CAS  Google Scholar 

  • Redi CA, Capanna E (1988). Robertsonian heterozygotes in the house mouse and the fate of their germ cells. In: Daniel A, ed., The Cytogenetics of Mammalian Autosomal Rearrangements. New York: Alan R. Liss, pp. 315–359.

    Google Scholar 

  • Redi CA, Garagna S, Della Valle G, Bottiroli G, Dell’Orto P, Viale G, Peverali F, Raimondi E, Forejt J (1990a). Differences in the organisation and chromosomal allocation of satellite DNA between the European long-tailed house mice of the domesticus and musculus groups. Chromosoma 99: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Zuccotti M (1990b). Robertsonian chromosome formation and fixation: the genomic scenario. Biol J Linn Soc 41: 235–255.

    Article  Google Scholar 

  • Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E (2001). The other chromatin. Chromosoma 110: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH (2001). Chromosomal rearrangements and speciation. Trends Ecol Evol 16: 351–358.

    Article  PubMed  Google Scholar 

  • Rose D, Holm C (1993). Meiosis-specific arrest revealed in DNA topoisomerase II mutants. Mol Cell Biol 13: 3, 445–3, 455.

    Google Scholar 

  • Shabalina SA, Ogurtsov AY, Kondrashov VA, Kondrashov AS (2001). Selective constraint in intergenic regions of human and mouse genomes. Trends Genet 17: 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Strouboulis J, Wolffe AP (1996). Functional compartmentalization of the nucleus. J Cell Sci 109: 1, 991–2, 000.

    Google Scholar 

  • Tiersch TR, Wachtel SS (1991). On the evolution of genome size in birds. J Hered 82: 363–368.

    PubMed  CAS  Google Scholar 

  • Vinogradov AE (1995). Nucleotypic effect in homeotherms: body mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49: 1, 249–1, 259.

    Google Scholar 

  • Wallace B, Searle JB, Everett CA (1992). Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone: a comparison between “simple” Robertsonian heterozygotes and homozygotes. Cytogenet Cell Genet 61: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR, Hoppeler H (1991). The concept of symmorphosis: a testable hypothesis of structure–function relationship. Proc Natl Acad Sci 88: 10, 357–10, 361.

    Google Scholar 

  • White MJD (1978). Modes of Speciation. San Francisco: Freeman.

    Google Scholar 

  • Wong AKC, Rattner JB (1988). Sequence organization and cytological localization of the minor satellite of mouse. Nucl Acids Res 16: 11, 645–11, 661.

    Google Scholar 

  • Zijlmans JM, Martens UM, Poon SSS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM (1997). Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci 94: 7, 423–7, 428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Garagna, S., Capanna, E., Zuccotti, M., Redi, C.A. (2004). The EVO-DEVO of Pericentromeric DNA in the Mouse. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics