Skip to main content

Chromosomal Translocations in Leukaemia: Emerging Networks

  • Conference paper
Book cover Chromosomes Today
  • 228 Accesses

Abstract

The molecular dissection of the genetic causes of leukaemia has been helped by the relative ease with which leukaemic cells can be subjected to cytogenetic analysis. Almost 40 years ago it was noted that a peculiar small chromosome was a constant feature of chronic myeloid leukaemia (CML) (Nowell and Hungerford, 1960). This so-called Philadelphia chromosome was initially thought to be a partially deleted G-group chromosome. However, it became apparent in the early seventies when the first chromosome banding techniques were developed that the Philadelphia chromosome was a derivative chromosome 22 and the result of a reciprocal translocation between chromosomes 9 and 22 (Rowley, 1973). It still was not known whether this recurring translocation was the result of the malignant transformation process or whether it was indeed the cause of this process. When the breakpoints of the t(9;22)(q34;q11) were analysed at the molecular level in the early 1980s it was shown that they were located in the introns of two genes: the Abelson tryosine kinase gene (ABL) on 9q34 and a gene called break point cluster region (BCR) on 22q11 (Heisterkamp et al., 1983). The breaking and rejoining of the two chromosomes created two chimeric genes: the BCR/ABL chimeric gene on the Philadelphia chromosome (the der(22)) and the ABL/BCR gene on the derivative chromosome 9. These chimeric genes give rise to chimeric or fusion mRNAs which in turn can be translated into fusion proteins (Heisterkamp et al., 1985; Shtivelman et al., 1985). The open reading frame of the 3’ fusion partner is used correctly so that the resulting protein are true chimeras containing at their N-terminus the amino acid sequence of the 5′ gene and in their C-terminal region the amino acid sequence of the 3′ gene. The generation of transgenic mice that expressed the BCR/ABL fusion protein proved that this protein was indeed capable of causing leukaemia (Heisterkamp et al., 1990). Recently, experiments using mice with inducibly BCR/ABL transgenes showed that BCR/ABL is not only required for the initiation of the malignant transformation but also for the maintenance of the transformed state (Huettner et al., 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bannister AJ, Kouzarides T (1996). The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643.

    Article  PubMed  CAS  Google Scholar 

  • Bohlander SK (2000). Fusion genes in leukemia: an emerging network. Cytogenet Cell Genet 91: 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Bohlander SK, Janke A, Podleschny M, Griesinger F (2000a). The tyrosine kinase ARG (c-ABL-l) is fused to ETV6 in a mature T-Acute Lymphoblastic Leukemia (ALL) cell line with a t(1;10;12)(q25;p13;p13) and multilineage differentiation potential. Med Genet 12: 125 (abstract).

    Google Scholar 

  • Bohlander SK, Muschinsky V, Schrader K, et al. (2000b). Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 14: 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Bohlander SK, Putnik J, Bartels S (1998). ETV6 interacts with a histone acetyltransferase. Med Genet 10: 103 (abstract).

    Google Scholar 

  • Borrow J, Stanton VJ, Andresen JM, et al. (1996). The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Buijs A, Sherr S, van Baal S, et al. (1995). Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene 10: 1, 511–1, 519.

    Google Scholar 

  • Caligiuri MA, Strout MP, Schichman SA, et al. (1996). Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 56: 1, 418–1, 425.

    Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3, 127–3, 133.

    Google Scholar 

  • Cazzaniga G, Tosi S, Aloisi A, et al. (1999). The tyrosine kinase Abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts. Blood 94: 4, 370–4, 373.

    Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, et al. (1999). Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Bio Chem 274: 28, 528–28, 536.

    Google Scholar 

  • Chaplin T, Ayton P, Bernard OA, et al. (1995). A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 85: 1, 435–1, 441.

    Google Scholar 

  • Chase A, Reiter A, Burci L, et al. (1999). Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 93: 1, 025–1, 031.

    Google Scholar 

  • Cools J, Bilhou NC, Wlodarska I, et al. (1999). Fusion of a novel gene, BTL, to ETV6 in acute myeloid leukemias with a t(4;12)(q11-q12;p13). Blood 94: 1,820–1, 824.

    Google Scholar 

  • Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK (1996). The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3-clathrin assembly protein family. Proc Natl Acad Sci USA 93: 4, 804–4, 809.

    Google Scholar 

  • Eguchi M, Eguchi IM, Tojo A, et al. (1999). Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93: 1, 355–1, 363.

    Google Scholar 

  • Floyd S, De Camilli P (1998). Endocytosis proteins and cancer: a potential link? Trends Cell Biol 8: 299–301.

    Article  PubMed  CAS  Google Scholar 

  • Ford MG, Pearse BM, Higgins MK, et al. (2001). Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291: 1, 051–1, 055.

    Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, et al. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4, 917–4, 921.

    Google Scholar 

  • Golub TR, Barker GF, Lovett M, Gilliland DG (1994). Fusion of PDGF receptor ß to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Golub TR, Goga A, Barker GF, et al. (1996). Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 16: 4, 107–4, 116.

    Google Scholar 

  • Griesinger F, Podleschny M, Steffens R, Bohlander SK, Woermann B, Haase D (2000). A novel BCR-JAK2 fusion gene is the result of a translocation (9;22)(p24;q1 1) in a case of CML. Blood 96: 353a (abstract).

    Google Scholar 

  • Hattori M, Fujiyama A, Taylor TD, et al. (2000). The DNA sequence of human chromosome 21. Nature 405: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J (1990). Acute leukaemia in bcr/abl trangenic mice. Nature 344: 251–253.

    Article  PubMed  CAS  Google Scholar 

  • Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985). Structural organization of the bcr gene and its role in the Ph1 translocation. Nature 315: 758–761.

    Article  PubMed  CAS  Google Scholar 

  • Heisterkamp N, Stephenson J, Groffen J, et al. (1983). Localization of the c-abl oncogene adja-cent to a translocation breakpoint in chronic myelocytic leukemia. Nature 306: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ (1997). Defects in Yolk Sac Hematopoiesis in Mll-Null Embryos. Blood 90: 1, 799–1, 806.

    Google Scholar 

  • Hilfiker A, Hilfiker KD, Pannuti A, Lucchesi JC (1997). mof, a putative acetyl transferase gene related to the Tip 60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2,054–2,060.

    Google Scholar 

  • Huettner CS, Zhang P, Van Etten RA, Tenen DG (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, et al. (1997). Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90: 4, 699–4, 704.

    Google Scholar 

  • Iijima Y, Ito T, Oikawa T, et al. (2000). A new ETV6/TEL partner gene, ARG (ABL related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood 95: 2, 126–2, 131.

    Google Scholar 

  • International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998). A novel ETV6–NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18: 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Montgomery KT, Bohlander SK, et al. (1994). Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases. Blood 84: 3, 473–3, 482.

    Google Scholar 

  • Kulkarni S, Heath C, Parker S, et al. (2000). Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 60: 3, 592–3, 598.

    Google Scholar 

  • Lacronique V, Boureux A, Valle VD, et al. (1997). A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1, 309–1, 312.

    Google Scholar 

  • Lekanne Deprez RH, Riegman PH, Groen NA, et al. (1995). Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene 10: 1, 521–1, 528.

    Google Scholar 

  • Leo C, Chen JD (2000). The SRC family of nuclear receptor coactivators. Gene 245: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL (1998). Acute mixed lineage leukemia with an inv(8)(p1 1q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92: 2, 118–2, 122.

    Google Scholar 

  • Linder B, Gerlach N, Jäckle H (2001). The Drosophila homolog of the human AF10 is an HP1- interacting suppressor of position effect variegation. EMBO rep 2: 221–216.

    Article  Google Scholar 

  • Liu P, Tarle SA, Hajra A, et al. (1993). Fusion between transcription factor CBFß/PEBP2ß and a myosin heavy chain in acute myeloid leukemia. Science 261: 1, 041.

    Google Scholar 

  • Mitelman F (1994). Catalog of Chromosome Aberrations in Cancer. New York: Alan R. Liss.

    Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88: 10, 431–10, 434.

    Google Scholar 

  • Mrózek K, Heinonen K, de la Chalpelle A, Bloomfield CD (1997). Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol 24: 17–31.

    PubMed  Google Scholar 

  • Nakao M, Yokota S, Iwai T, et al. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10: 1, 911–1, 918.

    Google Scholar 

  • Nowell PC, Hungerford DA (1960). A minute chromosome in human granulocytic leukemia. Science 132: 1, 497.

    Google Scholar 

  • Nucifora G, Rowley JD (1995). AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86: 1–14.

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–939.

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N, et al. (2001a). AML1-ETO downregulates the granulocytic differentiation factor C/EBPa in t(8;21) myeloid leukemia. Nat Med 7: 444–451.

    Article  PubMed  CAS  Google Scholar 

  • Pabst T, Mueller BU, Zhang P, et al. (2001b). Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-a (C/EBPa), in acute myeloid leukemia. Nat Genet 27: 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, et al. (2001). Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10: 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM (1995). The novel acti-vation of ABL by fusion to an ets-related gene, TEL. Cancer Res 55: 34–38.

    PubMed  CAS  Google Scholar 

  • Peeters P, Raynaud SD, Cools J, et al. (1997a). Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90: 2, 535–2, 540.

    Google Scholar 

  • Peeters P, Wlodarska I, Baens M, et al. (1997b). Fusion of ETV6 to MDS1/EVI1 as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer Res 57: 564–569.

    PubMed  CAS  Google Scholar 

  • Reifsnyder C, Lowell J, Clarke A, Pillus L (1996). Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 14: 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Romana SP, Le Coniat M, Poirel H, Marynen P, Bernard OA, Berger R (1996). Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia 10: 167–170.

    PubMed  CAS  Google Scholar 

  • Ross TS, Bernard OA, Berger R, Gilliland DG (1998). Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q1 1.2). Blood 91: 4, 419–4, 426.

    Google Scholar 

  • Rowley J (1973). A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1990). Recurring chromosome abnormalities in leukemia and lymphoma. Semin Hematol 27: 122–136.

    PubMed  CAS  Google Scholar 

  • Rubin BP, Chen CJ, Morgan TW, et al. (1998). Congenital mesoblastic nephroma t(12;15) is associated with ETV6–NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153: 1, 451–1, 458.

    Google Scholar 

  • Rubnitz JE, Behm FG, Downing JR (1996). 11q23 rearrangements in acute leukemia. Leukemia 10: 74–82.

    Google Scholar 

  • Schwaller J, Anastasiadou E, Cain D, et al. (2001). H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood 97: 3, 910–3, 918.

    Google Scholar 

  • Shtivelman E, Lifshitz B, Gale R, Canaani E (1985). Fused transcript of Abl and Bcr genes in chronic myelogenous leukemia. Nature 315: 550–554.

    Article  PubMed  CAS  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, et al. (1995). Tel/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1, 985–1, 989.

    Google Scholar 

  • So CW, Caldas C, Liu MM, et al. (1997). EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc Natl Acad Sci USA 94: 2, 563–2, 568.

    Google Scholar 

  • So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC (2000). The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 14: 594–601.

    Article  PubMed  CAS  Google Scholar 

  • Sobulo OM, Borrow J, Tomek R, et al. (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94: 8, 732–8, 737.

    Google Scholar 

  • Song WJ, Sullivan MG, Legare RD, et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175.

    Article  PubMed  CAS  Google Scholar 

  • Suto Y, Sato Y, Smith SD, Rowley JD, Bohlander SK (1997). A t(6;12)(q23;p13) results in the fusion of ETV6 to a novel gene, STL, in a B-cell ALL cell line. Genes Chrom Cancer 18: 254–268.

    Article  PubMed  CAS  Google Scholar 

  • Taki T, Ohnishi H, Shinohara K, et al. (1998). ABI-1, a human homologue to mouse ABL/Interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood 92: 1, 125–1, 130.

    Google Scholar 

  • Taki T, Sako M, Tsuchida M, Hayashi Y (1997). The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89: 3, 945–3, 950.

    Google Scholar 

  • Taub R, Kirsch I, Morton C, et al. (1982). Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79: 7, 837–7, 841.

    Google Scholar 

  • Tebar F, Bohlander SK, Sorkin A (1999). Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10: 2, 687–2, 702.

    Google Scholar 

  • Tenen DG, Hromas R, Licht JD, Zhang DE (1997). Transcription factors, normal myeloid development, and leukemia. Blood 90: 489–519.

    PubMed  CAS  Google Scholar 

  • Thirman MJ, Gill HJ, Burnett RC, et al. (1993). Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 1 1q23 chromosomal translocations. New Engl J Med 329: 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H (1998). The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J 17: 507–519.

    Article  PubMed  CAS  Google Scholar 

  • Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH (1997). Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J 16: 4, 374–4, 383.

    Google Scholar 

  • Wang Q, Stacy T, Binder M, Marín-Padilla M, Sharpe AH, Speck NA (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93: 3, 444–3, 449.

    Google Scholar 

  • Wang LC, Swat W, Fujiwara Y, et al. (1998). The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12: 2, 392–2, 402.

    Google Scholar 

  • Yagasaki F, Jinnai I, Yoshida S, et al. (1999). Fusion of TEL/ETV6 to a novel ACS2 in myelodysplastic syndrome and acute myelogenous leukemia with t(5;12)(q31;p13). Genes Chrom Cancer 26: 192–202.

    Article  PubMed  CAS  Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein a-deficient mice. Proc Natl Acad Sci USA 94: 569–574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bohlander, S.K. (2004). Chromosomal Translocations in Leukaemia: Emerging Networks. In: Schmid, M., Nanda, I. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1033-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1033-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5855-3

  • Online ISBN: 978-94-017-1033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics