Skip to main content

Oxidation of Lipids in Biological Tissue and Its Significance

  • Chapter
Chemical Changes in Food During Processing

Part of the book series: ift Basic Symposium Series ((IFTBSS))

  • 242 Accesses

Abstract

Both plants and animals possess biochemical systems to sequentially transform glyceride lipid into fatty acid derivatives by a process that could be given the generic name, “polyunsaturated fatty acid (PUFA) cascade.” Although similarities exist between the plant and animal cascade, substantial differences exist not only in the pathways of the sequence, but also in the control mechanisms regulating the pathways and the so-called end products formed. Typically, the cascade is composed of the following steps: (a) hydrolysis of glyceride lipids by phospholipase, lipase, or other lipolytic acyl hydrolases; (b) oxidation of the released PUFA by lipoxygenase (LOX) or prostaglandin endoperoxide synthetase; and (c) enzymatic conversion of these oxidized fatty acids (either fatty acid hydroperoxides or fatty acid hydroperoxyendoperoxides) into a variety of fatty acid derivatives. The compounds produced by the cascade usually play an indispensable role in controlling certain metabolic functions of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADAMS, D.O., and YANG, S.F. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. U.S.A. 76, 170–174.

    Article  Google Scholar 

  • BAUR, C., and GROSCH, W. 1977. Investigation about the taste of di-, tri-, and tetrahydroxy fatty acids. Z. Lebensm.-Unters. -Forsch. 165, 82–84 (in German).

    Article  Google Scholar 

  • BAUR, C., GROSCH, W., WIESER, H., and JUGEL, H. 1977. Enzymatic oxidation of linoleic acid: Formation of bitter-tasting fatty acids. Z. Lebensm.-Unters. -Forsch. 164, 171–176.

    Article  Google Scholar 

  • BIERMANN, V.U., WITTMAN, A., and GROSCH, W. 1980. Occurrence of bitter hydroxy fatty acids in oat and wheat. Fette, Seifen, Anstrichm. 82, 236–240 (in German).

    Article  Google Scholar 

  • BUCHANAN, B., WOLOSIUK, R.A., and SCHÜRMANN, P. 1979. Thioredoxin and enzyme regulation. Trends Biochem. Sci. 4, 93–96.

    Article  Google Scholar 

  • CHRISTOPHER, J.P., PISTORIUS, E.K., REGNIER, F.E., and AXELROD, B. 1972. Factors influencing the positional specificity of soybean lipoxygenase. Biochim. Biophys. Acta 289, 82–87.

    Article  Google Scholar 

  • CREELMAN, R.A., and ZEEVAART, J.A.D. 1984. Incorporation of oxygen into abs-cisic acid and phaseic acid from molecular oxygen. Plant Physiol. 75, 166–169.

    Article  Google Scholar 

  • DHINDSA, R.S., PLUMB-DHINDSA, P.L, and REID, D.M. 1982. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant. 56, 453–457.

    Article  Google Scholar 

  • DIX, T.A., and MARNETT, L.J. 1983. Hematin-catalyzed rearrangement of hydro-peroxylinoleic acid to epoxy alcohols via an oxygen rebound. J. Am. Chem. Soc. 105, 7001–7002.

    Article  Google Scholar 

  • DOUILLARD, R. 1980. Characterization and meaning of chloroplast lipoxygenase activities. In Biogenesis and Function of Plant Lipids. P. Mazliak, P. Benveniste, C. Costes, and P. Douce (Editors). Elsevier, Amsterdam.

    Google Scholar 

  • DOUILLARD, R., and BERGERON, E. 1981. Chloroplastic localization of soluble lipoxygenase activity in young leaves. Plant Sci. Lett. 22, 263–268.

    Article  Google Scholar 

  • DUPONT, J. 1981. Lipoxygenase-mediated cleavage of fatty acids in plant mitochondria. Physiol. Plant. 52, 225–232.

    Article  Google Scholar 

  • DUPONT, J., RUSTIN, P., and LANCE, C. 1982. Interaction between mitochondrial cytochromes and linoleic acid hydroperoxide. Possible confusion with lipoxygenase and alternative pathway. Plant Physiol. 69, 1308–1314.

    Article  Google Scholar 

  • EGMOND, M.R., VLIEGENTHART, J.F.G., and BOLDINGH, J. 1972. Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid from corn germs and soya beans. Biochem. Biophys. Res. Com-mun. 48, 1055–1060.

    Article  Google Scholar 

  • ESKIN, N.A.M., GROSSMAN, S., and PINSKY, A. 1977. Biochemistry of lipoxygenase in relation to food quality. CRC Crit. Rev. Food Sci. Nutr. 9, 1–40.

    Google Scholar 

  • ESTERBAUER, H., and SCHAUENSTEIN, E. 1977. Isomeric trihydroxyoctadecen-oic acids in beer: Evidence for their presence and quantitative determination. Z. Lebensm.-Unters. -Forsch. 164, 255–259 (in German).

    Article  Google Scholar 

  • FALARDEAU, P., HAMBERG, M., and SAMUELSSON, B. 1976. Metabolism of 8,11,14-eicosatrienoic acid in human platelets. Biochim. Biophys. Acta 441, 193–200.

    Article  Google Scholar 

  • FIRN, R.D., and FRIEND, J. 1972. Enzymatic production of the plant growth inhibitor, xanthoxin. Planta 103, 263–266.

    Article  Google Scholar 

  • GALLIARD, T. 1975. Degradation of plant lipids by hydrolytic and oxidative enzymes. In Advances in the Chemistry and Biochemistry of Plant Lipids. T. Gal-liard and E.I. Mercer (Editors). Academic Press, NY.

    Google Scholar 

  • GALLIARD, T., and MATTHEWS, J.A. 1975. Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber. I. Comparison 9-D- and 13-L-hydroperoxy-octadecadienoic acids as substrates for the formation of a divinyl ether derivative. Biochim. Biophys. Acta 398, 1–9.

    Article  Google Scholar 

  • GALLIARD, T., PHILLIPS, D.R., and FROST, D.J. 1973. Novel divinyl ether in extracts of Solanum tuberosum. Chem. Phys. Lipids 11, 173–180.

    Article  Google Scholar 

  • GARDNER, H.W. 1970. Sequential enzymes of linoleic acid oxidation in corn germ: Lipoxygenase and linoleate hydroperoxide isomerase. J. Lipid Res. 11, 311–321.

    Google Scholar 

  • GARDNER, H.W. 1979. Stereospecificity of linoleic acid hydroperoxide isomerase from corn germ. Lipids 14, 208–211.

    Article  Google Scholar 

  • GARDNER, H.W. 1980. Lipid enzymes: Lipases, lipoxygenases, and “hydroperoxidases.” In Autoxidation in Food and Biological Systems. M.G. Simic and M. Karel (editors). Plenum Press, New York.

    Google Scholar 

  • GARDNER, H.W. 1983. Effects of lipid hydroperoxides on food components. In Xe-nobiotics in Foods and Feeds. J.W. Finley and D.E. Schwass (Editors). American Chemical Society, Washington, DC.

    Google Scholar 

  • GARDNER, H.W. In press. Flavors and bitter tastes from oxidation of lipids by enzymes. In Flavor Chemistry of Fats and Oils. D.B. Min and T.H. Smouse (Editors). American Oil Chemists Society Publications, Champaign, IL.

    Google Scholar 

  • GARDNER, H.W., and KLEIMAN, R. 1981. Degradation of linoleic acid hydroperoxides by a cysteine-FeCl3 catalyst as a model for similar biochemical reactions. II. Specificity in formation of fatty acid epoxides. Biochim. Biophys. Acta 665, 113–125.

    Article  Google Scholar 

  • GARDNER, H.W., and PLATTNER, R.D. 1984. Linoleate hydroperoxides are cleaved heterolytically into aldehydes by a Lewis acid in aprotic solvent. Lipids 19, 294–299.

    Article  Google Scholar 

  • GARDNER, H.W., WEISLEDER, D., and KLEIMAN, R. 1978. Formation of trans-12,13-epoxy-9-hydroperoxy-trans-10-octadecenoic acid from 13-L-hydroperoxy-cis-9, trans-11-octadecadienoic acid catalyzed by either a soybean extract or cysteine-FeCl3. Lipids 13, 246–252.

    Article  Google Scholar 

  • GARDNER, H.W., WEISLEDER, D., and NELSON, E.C. 1984A. Acid catalysis of a linoleic acid hydroperoxide: Formation of epoxides by an intramolecular cycliza-tion of the hydroperoxide group. J. Org. Chem. 49, 508–515.

    Article  Google Scholar 

  • GARDNER, H.W., NELSON, E.C., TJARKS, L.W., and ENGLand, R.E. 1984B. Acid-catalyzed transformation of 13(S)-hydroperoxylinoleic acid into epoxyhydroxy-octadecenoic and trihydroxyoctadecenoic acids. Chem. Phys. Lipids 35, 87–101.

    Article  Google Scholar 

  • GARSSEN, G.J., VLIEGENTHART, J.F.G., and BOLDINGH, J. 1971. An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem. J. 122, 327–332.

    Google Scholar 

  • GARSSEN, G.J., VELDINK, G.A., VLIEGENTHART, J.F.G., and BOLDINGH, J. 1976. The formation of threo-11-hydroxy-trans-12,13-epoxy-9-cis-octadecen-oic acid by enzymic isomerization of 13-L-hydroperoxy-9-cis,11-trans-octadecadi-enoic acid by soybean lipoxygenase-1. Eur. J. Biochem. 62, 33–36.

    Article  Google Scholar 

  • GOLDSTEIN, A.H., and ERSON, J.O., and MCDANIEL, R.G. 1981. Cyanide-insensitive and cyanide-sensitive O2 uptake in wheat. II. Gradient purified mitochondria lack cyanide-insensitive respiration. Plant Physiol. 67, 594–596.

    Article  Google Scholar 

  • GRAVELand, A. 1970. Enzymatic oxidations of linoleic acid and glycerol-1-mono-linoleate in doughs and flour-water suspensions. J. Am. Oil Chem. Soc. 47, 352–361.

    Article  Google Scholar 

  • GROSSMAN, S., and LESHEM, Y.Y. 1978. Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence. Physiol. Plant. 43, 359–362.

    Article  Google Scholar 

  • HAMBERG, M. 1975. Decomposition of unsaturated fatty acid hydroperoxides by hemoglobin: Structures of major products of 13-L-hydroperoxy-9,11-octadecadi-enoic acid. Lipids 10, 87–92.

    Article  Google Scholar 

  • HAMBERG, M., and SAMUELSSON, B. 1967. On the mechanism of the biosynthesis of prostaglandins E1 and F. J. Biol. Chem. 242, 5336–5343.

    Google Scholar 

  • HATANAKA, A., KAJIWARA, T., SEKIYA, J., and INOUYE, S. 1982. Solubilization and properties of the enzyme-cleaving 13-L-hydroperoxylinoleic acid in tea leaves. Phytochemistry 21, 13–17.

    Article  Google Scholar 

  • HAYDAR, M., and HADZIYEV, J. 1973. A study of lipoxidase in pea seeds and seedlings. J. Sci. Food Agric. 24, 1039–1053.

    Article  Google Scholar 

  • IMAGAWA, T., KASAI, S., MATSUI, K., and NAKAMURA, T. 1982. Methyl hydro-peroxyepoxyoctadecenoate as an autoxidation product of methyl linoleate: A new inhibitor-uncoupler of mitochondrial respiration. J. Biochem. (Tokyo) 92, 1109–1121.

    Google Scholar 

  • IMAGAWA, T., KASAI, S., MATSUI, K., and NAKAMURA, T. 1983. Detrimental effects of methyl hydroperoxyepoxyoctadecenoate on mitochondrial respiration: Detoxication by rat liver mitochondria. J. Biochem. (Tokyo) 94, 87–96.

    Google Scholar 

  • LEGGE, R.L., and THOMPSON, J.E. 1983. Involvement of hydroperoxides and an ACC-derived free radical in the formation of ethylene. Phytochemistry 22, 2161–2166.

    Article  Google Scholar 

  • LIN, Y.-H., MOREAU, R.A., and HUANG, A.H.C. 1982. Involvment of glyoxysomal lipase in the hydrolysis of storage triacylglycerols in the cotyledons of soybean seedlings. Plant Physiol. 70, 108–112.

    Article  Google Scholar 

  • LIN, Y.-H., WIMER, L.T., and HUANG, A.H.C. 1983. Lipase in the lipid bodies of corn scutella during seedling growth. Plant Physiol. 73, 460–463.

    Article  Google Scholar 

  • MAJOR, R.T., MARCHINI, P., and SPROSTON, T. 1960. Isolation from Ginko biloba L. of an inhibitor of fungus growth. J. Biol. Chem. 235, 3298–3299.

    Google Scholar 

  • MARCUS, A.J. 1978. The role of lipids in platelet function: With particular reference to the arachidonic acid pathway. J. Lipid Res. 19, 793–826.

    Google Scholar 

  • MEIGH, D.F., JONES, J.D., and HULME, A.C. 1967. The respiration climacteric in the apple. Production of ethylene and fatty acids in fruit attached to and detached from the tree. Phytochemistry 6, 1507–1515.

    Article  Google Scholar 

  • MILBORROW, B.V. 1974. The chemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 25, 259–307.

    Article  Google Scholar 

  • MOLL, C., BIERMANN, U., and GROSCH, W. 1979. Occurrence and formation of bitter-tasting trihydroxy fatty acids in soybeans. J. Agric. Food Chem. 27, 239–243.

    Article  Google Scholar 

  • MOORE, G.A., JEWELL, S.A., BELLOMO, G., and ORRENIUS, S. 1983. On the relationship between Ca2+ efflux and membrane damage during t-butyHydroperoxide metabolism by liver mitochondria. FEBS Lett. 153, 289–292.

    Article  Google Scholar 

  • NELSON, N.A., KELLY, R.C., and JOHNSON, R.A. 1982. Prostaglandins and the arachidonic acid cascade. Chem. Eng. News 60 (33), 30–44.

    Article  Google Scholar 

  • O’CONNOR, D.E., MIHELICH, E.D., and COLEMAN, M.C. 1981. Isolation and characterization of bicyclo endoperoxides derived from methyl linolenate. J. Am. Chem. Soc. 103, 223–224.

    Article  Google Scholar 

  • PACE-ASCIAK, C.R., MIZUNO, K., YAMAMOTO, S., GRANSTROEM, E., and SAMUELSSON, B. 1983. Oxygenation of arachidonic acid into 8,11,12- and 10,11,12-trihydroxyeicosatrienoic acid by rat lung. Adv. Prostaglandin, Thromboxane, Leukotriene Res. 11, 133–139.

    Google Scholar 

  • PARRISH, D.J., and LEOPOLD, A.C. 1978. Confounding of alternate respiration by lipoxygenase activity. Plant Physiol. 62, 470–472.

    Article  Google Scholar 

  • PIRRUNG, M.C. 1983. Ethylene biosynthesis. II. Stereochemistry of ripening, stress, and model reactions. J. Am. Chem. Soc. 105, 7207–7209.

    Article  Google Scholar 

  • RUSTIN, P., DUPONT, J., and LANCE, C. 1983. A role for fatty acid peroxy radicals in the cyanide-insensitive pathway of plant mitochondria? Trends Biochem. Sci. 8, 155–157.

    Article  Google Scholar 

  • SCHULTZ, J.C. 1983. Tree tactics. Nat. Hist. (NY) 92 (5), 12–25.

    Google Scholar 

  • SEKIYA, J., KAJIWARA, T., MUNECHIKA, K., and HATANAKA, A. 1983. Distribution of lipoxygenase and hydroperoxide lyase in the leaves of various plant species. Phytochemistry 22, 1867–1869.

    Article  Google Scholar 

  • SENSER, F., and GROSCH, W. 1975. Microbes from soybeans, inhibition of growth by lipoxygenase isoenzyme. Z. Lebensm.-Unters. -Forsch. 159, 103–106 (in German).

    Article  Google Scholar 

  • SHIMURA, M., MASE, S., IWATA, M., SUZUKI, A., WATANABE, T., SEKIZAWA, Y, SASAKI, T., FURIHATA, K., SETO, H., and OTAKE, N. 1983. Anti-conidial germination factors induced in the presence of probenazole in infected host leaves. III. Structural elucidation of substances A and C. Agric. Biol. Chem. 47, 1983–1989.

    Article  Google Scholar 

  • SHINGLES, R.M., ARRON, G.P., and HILL, R.D. 1982. Alternative pathway respiration and lipoxygenase activity in aged potato slice mitochondria. Plant Physiol. 69, 1435–1438.

    Article  Google Scholar 

  • SHIOTANI, A., WATANABE, T, MATSUOKA, I, and NAKAMURA, T. 1980. Comparative studies on the effects of linoleate and methyl linoleate and their hydroperoxides on the respiration of rat heart mitochondria. J. Biochem. (Tokyo) 88, 677–683.

    Google Scholar 

  • SIEDOW, J.N., and GIRVIN, M.E. 1980. Alternative respiratory pathway. Its role in seed respiration and its inhibition by propyl gallate. Plant Physiol. 65, 669–674.

    Article  Google Scholar 

  • TAYLOR, H.F., and BURDEN, R.S. 1973. Preparation and metabolism of [2-14C]-cis, trans-xanthoxin. J. Exp. Bot. 24, 873–880.

    Article  Google Scholar 

  • TOLBERT, N.E. 1981. Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50, 133–157.

    Article  Google Scholar 

  • VELDINK, G.A., VLIEGENTHART, J.F.G., and BOLDINGH, J. 1970. Proof of the enzymatic formation of 9-hydroperoxy-10-trans,12-cis-octadecadienoic acid by soya lipoxygenase. Biochim. Biophys. Acta 202, 198–199.

    Article  Google Scholar 

  • VELDINK, G.A., VLIEGENTHART, J.F.G., and BOLDINGH, J. 1977. Plant lipoxygenases. Prog. Chem. Fats Other Lipids 15, 131–166.

    Article  Google Scholar 

  • VERNOOY-GERRITSEN, M., BOS, A.L.M., VELDINK, G.A., and VLIEGENTHART, J.F.G. 1983. Localization of lipoxygenases 1 and 2 in germinating soybean seeds by an indirect immunofluorescence technique. Plant Physiol. 73, 262–267.

    Article  Google Scholar 

  • VLIEGENTHART, J.F.G. 1978. Plenary lecture at the 14th World Congress of the International Society for Fat Research, Brighton, England, September 17–22.

    Google Scholar 

  • VICK, B.A., and ZIMMERMAN, D.C. 1979B. Distribution of a fatty acid cyclase enzyme system in plants. Plant Physiol. 64, 203–205.

    Article  Google Scholar 

  • VICK, B.A., and ZIMMERMAN, D.C. 1979B. Distribution of a fatty acid cyclase enzyme system in plants. Plant Physiol. 64, 203–205.

    Article  Google Scholar 

  • VICK, B.A., and ZIMMERMAN, D.C. 1981. Lipoxygenase, hydroperoxide isomer-ase, and hydroperoxide cyclase in young cotton seedlings. Plant Physiol. 67, 92–97.

    Article  Google Scholar 

  • VICK, B.A., and ZIMMERMAN, D.C. 1982. Levels of oxygenated fatty acids in young corn and sunflower plants. Plant Physiol. 69, 1103–1108.

    Article  Google Scholar 

  • VICK, B.A., and ZIMMERMAN, D.C. 1983. The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenase. Biochem. Biophys. Res. Commun. 111, 470–477.

    Article  Google Scholar 

  • VICK, B.A., FENG, P., and ZIMMERMAN, D.C. 1980. Formation of [12-18O]oxo-ds-10,cis-15-phytodienoic acid from [13-18O]hydroperoxylinolenic acid by hydroperoxide cyclase. Lipids 15, 468–471.

    Article  Google Scholar 

  • WANNER, G., and THEIMER, R.R. 1978. Membranous appendices of spherosomes (oleosomes). Planta 140, 163–169.

    Article  Google Scholar 

  • WARDALE, D.A., LAMBERT, E.A., and GALLIARD, T. 1978. Localization of fatty acid hydroperoxide cleavage activity in membranes of cucumber fruit. Phyto-chemistry 17, 205–212.

    Google Scholar 

  • YENTUR, S., and LEOPOLD, A.C. 1976. Respiratory transition during seed germination. Plant Physiol. 57, 274–276.

    Article  Google Scholar 

  • ZIMMERMAN, D.C. 1966. A new product of linoleic acid oxidation by a flaxseed enzyme. Biochem. Biophys. Res. Commun. 23, 398–402.

    Article  Google Scholar 

  • ZIMMERMAN, D.C., and COUDRON, C.A. 1979. Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol. 63, 536–541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gardner, H.W. (1985). Oxidation of Lipids in Biological Tissue and Its Significance. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food During Processing. ift Basic Symposium Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1016-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1016-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1018-3

  • Online ISBN: 978-94-017-1016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics