Skip to main content

Environmental Effects on Protein Quality

  • Chapter
Chemical Changes in Food During Processing

Part of the book series: ift Basic Symposium Series ((IFTBSS))

Abstract

The environment of a food protein can exert profound changes on the functionality and nutritional quality of the protein. There are a number of degradative reactions resulting from the processing or storage environment which can cause undesirable changes in proteins. As a result of these reactions protein can exhibit losses in functionality, nutritional quality, increased risk of toxicity, and both desirable and undesirable flavor changes. Environment changes that can adversely affect proteins include heat in the presence and absence of carbohydrate, extremes in pH (particularly alkaline), and exposure to oxidative conditions, including those caused by light and those caused by oxidizing lipids. Nutrients are destroyed when foods are processed, largely because they are sensitive to pH of the solvent, to oxygen, light, heat, or combinations of these. The amino acid composition of food protein is of fundamental importance in determining nutritional quality and functionality. The literature referring to the influences of processing on proteins, particularly nutritional quality, can lead to two very different conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADRIAN, J. 1963. La reaction de Maillard. 2. Etude du comportement de six acides amines pures. Ann. Nutr. Alimento 17, 1–35.

    Google Scholar 

  • ADRIAN, J. 1974. Nutritional and physiological consequences of the Maillard reaction. World Rev. Nutr. Diet. 19, 71–122.

    Google Scholar 

  • ADRIAN, J., and FA VIER, J.C. 1961. La reaction de Maillard. 1. Etude du comportement de la lysine pure. Ann. Nutr. Aliment. 15, 181–225.

    Google Scholar 

  • ARAY, S.S., PARIHAR, D.B., and NATH, H. 1972. Interaction of malonaldehyde in foods. I. Reaction with sulfur amino acids. J. Food Sei. Technol. 9, 185–190.

    Google Scholar 

  • ASQUITH, R.S., CARTHEW, P., HANNA, H.D., and OTTERBURN, M.S. 1974. The covalent reactions of the primary amine side chains and disulfide bonds of keratin. Pt. 1. J. Soc. Dyers Colour. 90, 357.

    Article  Google Scholar 

  • AYMARD, C, CUQ, J.L., and CHEFTEL, J.C. 1978. Formation of lysinoalanine and lanthionine in various food proteins heated at netural or alkaline pH. Food Chem. 3, 1–5.

    Article  Google Scholar 

  • BADA, J.L. 1972. Kinetics of racemization of amino acids as a function of pH. J. Am. Chem. Soc. 94, 1371–1373.

    Article  Google Scholar 

  • BENDER, A.E. 1978. Food Processing and Nutrition, pp. 59–79. Academic Press, New York.

    Google Scholar 

  • BETSCHART, A.A. 1974. Nitrogen solubility of alfalfa protein concentrate as influenced by various factors. J. Food Sei. 39, 1110–1115.

    Article  Google Scholar 

  • BEUK, J.F., CHORNOCK, F.W., and RICE, E.E. 1949. The effect of heat on the availability of pork protein in vivo and in vitro. J. Biol. Chem. 180, 1243.

    Google Scholar 

  • BJARNASON, J., and CARPENTER, K.J. 1969. Mechanisms of heat damage in proteins. 1. Models with acylated lysine units. Br. J. Nutr. 23, 859.

    Article  Google Scholar 

  • BJARNASON, J., and CARPENTER, K.J. 1970. Mechanism of heat damage in proteins. 2. Chemical changes in pure proteins. Br. J. Nutr. 24, 313.

    Article  Google Scholar 

  • BOHAK, Z. 1964. Nє-(DL-2-amino-2-carboxyethyl)-L-lysine, a new amino acid formed on alkaline treatment of proteins. J. Biol. Chem. 239, (9), 2878–2887.

    Google Scholar 

  • BREITBART, D.J., and NAWAR, W.W. 1979. Thermal decomposition of lysine. J. Agric. Food Chem. 27, 511.

    Article  Google Scholar 

  • BUNJAPAMAI, S., MAHONEY, R.R, and FAGERSON, I.S. 1982. Determination of D-amino acids in some processed foods and effect of racemization on in vitro digestibility of casein. J. Food Sei. 47, 1229–1234.

    Article  Google Scholar 

  • CARPENTER, K.J. 1960. The estimation of the available lysine in animal protein foods. Biochem. J. 77, 604.

    Google Scholar 

  • CARPENTER, K.J., and DUCKWORTH, J.J. 1950. The nutritive value of herring “alkali reduction” meal for chicks. J. Agric. Sei. 40, 44.

    Article  Google Scholar 

  • CIRCLE, S.J., and SMITH, A.K. 1972. Processing soy flours, protein concentrates and protein isolates. In Soybean Chemistry and Technology. A. K. Smith and S. J. Circle (Editors), pp. 294–338. Avi Publishing Co., Westport, Ct.

    Google Scholar 

  • COLLINS, M.A., and GRANT, R.A. 1969. Ultraviolet light induced radicals in glycine peptides in the solid state. Photochem. Photobiol. 9, 369–375.

    Article  Google Scholar 

  • CRAWFORD, L., ROBBINS, K.R., and FINLEY, J.W. 1984. Unpublished results.

    Google Scholar 

  • CUQ, J.L., PROVANSAL, M., GUILLEUX, F., and CHEFTEL, C. 1973. Oxidation of methionine residues of casein by hydrogen peroxide. Effect on in vitro digestibility. J. Food Sei. 38 (1), 11–13.

    Article  Google Scholar 

  • DAKIN, H.D. 1908. Note on the relative rate of absorption of optically isomeric substances from the intestine. J. Biol. Chem. 4, 15–16.

    Google Scholar 

  • DAKIN, H.D. 1912. The racemization of proteins and their derivatives resulting from tautomeric change. J. Biol. Chem. 13, 357–362.

    Google Scholar 

  • DE GROOT, A.P., SLUMP, P., FERON, V.J., and VAN BEEK, L. 1976. Effects of alkali treated proteins. Feeding studies with free and protein-bound lysinoalanine in rats and other animals. J. Nutr. 106, 1527–1538.

    Google Scholar 

  • DE KONING, P., and ROOIJEN, P.J. 1982. Aspects of the formation of lysinoalanine in milk and milk products. J. Dairy Res. 49, 725–736.

    Article  Google Scholar 

  • EDELHOCK, H., and OSBORNE, J.C, JR. 1976. The thermodynamic basis of the stability of proteins, nucleic acids, and membranes. Protein Chem. 30, 183.

    Article  Google Scholar 

  • ERBERSTOBLER, H. 1970. Zur Schädigung des Lysins bei der Herstellung und Lagerung von Trockenmilch. Milchwissenschaft 25, 280–284.

    Google Scholar 

  • ERBERSTOBLER, H.F., and HOLSTEIN, A.B. 1980. Untersuchungen über Vorkommen und Bildung von Lysinoalanin in Milchprodukten. Milchwissenschaft 35, 734–737.

    Google Scholar 

  • FEAIRHELLER, S.H., TAYLOR, M.M., and BAILEY, D.G. 1977. 35S-Sulfide incorporation during alkaline treatment of keratin and its relation to lanthionine formation. Adv. Exp. Med. Biol. 86B, 177–186.

    Article  Google Scholar 

  • FEENEY, R.E. 1980. Overview on the chemical deteriorative changes of proteins and their consequences. Acs Symp/Ser. 123, 1–47.

    Article  Google Scholar 

  • FINLEY, J.W. 1983. Lysinoalanine formation in severely treated proteins. Acs Symp. Ser. 234, 203–220.

    Article  Google Scholar 

  • FINLEY, J.W. 1984. Unpublished data.

    Google Scholar 

  • FINLEY, J.W., and LUNDIN, R.E. 1980. Lipid hydroperoxide induced oxidation of cysteine in peptides. In Autoxidation in Food and Biological Systems. M.G. Simic and M. Karel (Editors), pp. 223–235. Plenum Press, Ny.

    Chapter  Google Scholar 

  • FINLEY, J.W., WHEELER, E.L., WALKER, H.G., JR., and FINLAYSON, A.J. 1982. Effect of cysteine oxidation on lysinoalanine formation in proteins. J. Agric. Food Chem. 30, 818.

    Article  Google Scholar 

  • FOOTE, CS. 1976. Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In Free Radicals in Biology. W.A. Pryor (Editor), Vol. 2, pp. 85–133. Academic Press, Ny.

    Google Scholar 

  • FORBES, W.F., and SAVIGE, W.E. 1962. Photolysis and photoxidation of amino acids and peptides. II. Photodegradation of cysteine and related amino acids. Photo-chem. Photobiol. 1, 77–89.

    Article  Google Scholar 

  • FORBES, W.F., RIVETT, D.E., and SAVIEGE, W.E. 1962. Photolysis and photooxi-dation of peptides. IV. Degradation of methionine and homocystine by various forms of radiation. Photochem. Photobiol. 1, 217–230.

    Article  Google Scholar 

  • FRIEDMAN, M. 1977. Crosslinking amino acids—Stereochemistry and nomenclature. Adv. Exp. Med. Biol. 86B, 1–27.

    Article  Google Scholar 

  • FRIEDMAN, M., ZAHNLEY, J.C., and MASTERS, P.M. 1981. Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sei. 46, 127.

    Article  Google Scholar 

  • FUJIMAKI, M., HARAGUCHI, T., ABE, K., HOMMA, S., and ARAI, S. 1980. Specific conditions that maximize the formation of lysinoalanine in wheat gluten and fish protein concentrate. Agric. Biol. Chem. 44, 1911–1916.

    Article  Google Scholar 

  • GARDNER, H.W. 1983. Effects of lipid hydroperoxides on food components. Acs Symp. Ser. 234, 63–84.

    Article  Google Scholar 

  • GOULD, D.H., and MACGREGOR, J.T. 1977. Biological effects of alkali-treated protein and lysinoalanine: An overview. Adv. Exp. Med. Biol. 86B, 29–48.

    Article  Google Scholar 

  • HAMM, R. 1977. In Physical, Chemical and Biological Changes in Food Caused by Thermal Processing. T. Hoyem and O. Kvale (Editors), p. 101. Applied Science Publishers, London.

    Google Scholar 

  • HAYASE, F., KATO, H., and FUJIMAKI, M. 1973. Racemization of amino acid residues during roasting. Agric. Biol. Chem. 37, 191–192.

    Article  Google Scholar 

  • HAYASE, F., HIROMACHI, K, and FUJIMAKI, M. 1975. Racemization of amino acid residues in proteins and poly-L-amino acids during roasting. Agric. Biol. Chem. 23, 491–494.

    Article  Google Scholar 

  • HAYASE, F., KATO, H., and FUJIMAKI, M. 1979. Racemization of amino acid residues in casein roasted with glucose and/or methyl linoleate. Agric. Biol. Chem. 43, 2459–2465.

    Article  Google Scholar 

  • HAYASHI, R. 1982. Lysinoalanine as a metal chelator: An implication for toxicity. J. Biol. Chem. 257, 1389.

    Google Scholar 

  • HAYASHI, R., and KAMEDA, I. 1980a. Conditions for lysinoalanine formation during exposure of protein to alkali. Agric. Biol. Chem. 44, 175–181.

    Article  Google Scholar 

  • HAYASHI, R., and KAMEDA, I. 1980B. Racemization of amino acid residues during alkali treatment of protein and its adverse effect on pepsin digestibility. Agric. Biol. Chem. 44, 891–895.

    Article  Google Scholar 

  • HERMANNSSON, A.M., SWIK, B., and SKJOLDEBRAND, C. 1971. Functional properties of proteins for foods. Factors affecting solubility, foaming and swelling offish protein concentrate. Lebensm.-Wiss. Technol. 4, 201.

    Google Scholar 

  • HODGE, J.E. 1953. The chemistry of the browning reaction in model systems. J. Agric. Food Chem. 1, 928.

    Article  Google Scholar 

  • HORIGOME, T., YANAGIDA, T., and MIURA, M. 1974. Nutritive value of proteins prepared by reaction with oxidized ethyl linoleate in aqueous medium. Nippon Nogei Kagaku Kaishi 48, 195–199.

    Article  Google Scholar 

  • HOSPELHORN, B.C., and JENSEN, E.B. 1954. Sulfhydryl-dependent aggregation of bovine serum albumin. J. Am. Chem. Soc. 76, 2830–2832.

    Article  Google Scholar 

  • HURRELL, R.C., CARPENTER, K.J., SINCLAIR, W.J., OTTERBURN, M.S., and AS-QUITH, R.S. 1976. Mechanism of heat damage in proteins. Vii. Significance of lysine-containing isopeptides and of lanthionine in heated proteins. Br. J. Nutr. 35, 383.

    Article  Google Scholar 

  • ISHIKAWA, T., TAKAYAMA, S., KITAGAWA, T., KAWACHI, T., KINEBUCHI, M., MATSUKURA, N., UCHIDA, E., and SUGIMURA, T. 1979. In vivo experiments on tryptophan pyrolysis products. In Naturally Occurring Carcinogens-Mu-tagens and Modulators of Carcinogenesis. E.C. Miller (Editor), p. 159. University Park Press, Baltimore, Md.

    Google Scholar 

  • JANSEN, G.R., and EHLE, S.E. 1965. Studies on breads supplemented with soy, nonfat dry milk and lysine. II. Nutritive value. Food Technol. 19, 1439.

    Google Scholar 

  • JANSEN, G.R., EHLE, S.R., and HAUSE, N.L. 1964. Studies on nutritive losses of supplemental lysine in baking. II. Loss in water bread and in bread supplemented with moderate amounts of nonfat dry milk. Food Technol. 18, 114.

    Google Scholar 

  • KATO, Y., WATANABE, K., and SATO, Y. 1978. Effect of the Maillard reaction on the attributes of egg white. Agric. Biol. Chem. 42, 2233–2237.

    Article  Google Scholar 

  • KINSELLA, J.E. 1982. Relationship between structure and functional properties of food proteins. In Food Proteins. P.F. Fox and J.J. Condon (Editors), pp. 51–103. Applied Science Publishers, London.

    Google Scholar 

  • KOLTHOFF, I.M., and TAN, B.H. 1963. Reactivity of sulfhydryl and disulfide in proteins. Vi. Effect of heat denaturation on bovine serum albumin (Bsa) on sulfhydryl and disulfide content. J. Am. Chem. Soc. 87, 2717.

    Google Scholar 

  • KOSSEL, A., and WEISS, F. 1909. Über die Einwirkung von alkalein auf Proteinstoffe. I. Mitt. Physiol. Chem. 59, 492–498.

    Article  Google Scholar 

  • LEA, C.H. 1950. The role of amino acids in the deterioration of foods. The Browning reaction. Chem. Ind. (London) pp. 155–158.

    Google Scholar 

  • LEA, C.H., and HANNAN, R.S. 1949. Studies of the reaction between proteins and reducing sugars in the dry state. I. The effect of activity of water, of pH, and of temperature on the primary reaction between casein and glucose. Biochim. Bio-phys. Acta 3, 313.

    Article  Google Scholar 

  • LEAVER, T.H., and RAMSAY, G.C. 1969. Sensitized photooxidation of wool and silk by a triazinylstilbene. Photochem. Photobiol. 9, 531–536.

    Article  Google Scholar 

  • LEVENE, P.A., and BASS, L.W. 1929. Studies on racemization. Viii. The action of alkali on proteins: Racemization and hydrolysis. J. Biol. Chem. 82, 111.

    Google Scholar 

  • LIEN, Y.C., and NAWAR, W.W.1974A. Therman decomposition of some amino acids. Valine, leucine and isoleucine. J. Food Sei. 39, 911.

    Article  Google Scholar 

  • LIEN, Y.C., and NA WAR, W.W. 1974B. Thermal decomposition of some amino acids. Alanine and O-alanine. J. Food Sei. 39, 914.

    Article  Google Scholar 

  • MAILLARD, L.C. 1912. Action des acides amines sur les sucres. Formation des mé-lanoidines par voie méthodologique. C.R. Hebd. Seances Acad. Sei. 154, 66.

    Google Scholar 

  • MANNING, J.M. 1970. Determination of D- and L-amino acid residues in peptides. Use of tritiated hydrochloric acid to correct for racemization during acid hydrolysis. J. Am. Chem. Soc. 92, 9449–9454.

    Article  Google Scholar 

  • MAURON, J. 1964. Effect des taitements thermiques sur les protéines alimentaires. Int. Z. Vitaminforsch. 34, 96–116.

    Google Scholar 

  • MECHAM, D.K., and OLCOTT, H.S. 1947. Effect of dry heat on proteins. Ind. Eng. Chem. 39, 1023–1027.

    Article  Google Scholar 

  • NASEF, A.S. OSUGA, D.T., LEE, H.S., AHMED, A.I., WHITAKER, J.R., and FEE-NEY, R.E. 1977. Effects of alkali on proteins. J. Agric. Food Chem. 25, 245–251.

    Article  Google Scholar 

  • NEUBERGER, A. 1948. Stereochemistry of the amino acids. Adv. Protein Chem. 4, 297–343.

    Article  Google Scholar 

  • NEUCERE, J.N., and CHERRY, J.P. 1982. Structural changes in metabolism of protein following heat denaturation. Acs Symp. Ser. 206, 135–162.

    Article  Google Scholar 

  • NEWBERNE, P.M., and YOUNG, V.R. 1966. Effects of diets marginal in methionine and choline with and without vitamin B-12 on rat liver and kidney. J. Nutr. 89, 69.

    Google Scholar 

  • OAKES, J. 1976. Thermally denatured proteins—nuclear magnetic resonance, binding isotherm and chemical modification studies of thermally denatured bovine serum albumin(en). J. Chem. Soc, Faraday Trans. 1 72, 228.

    Google Scholar 

  • OSNER, R.C., and JOHNSON, R.M. 1974. Nutritional and chemical changes in heated casein. I. Preliminary study of solubility, gel filtration pattern and amino acid patterns. J. Food Technol. 9, 301–308.

    Article  Google Scholar 

  • OTTERBURN, M.S. 1977. The formation, isolation and importance of isopeptides in heated proteins. Adv. Exp. Med. Biol. 86B, 239–262.

    Article  Google Scholar 

  • OTTERBURN, M.S. 1983. Isopeptides: The occurrence and significance of natural and xenobiotic cross-links in proteins. Acs Symp. Ser. 234, 221–232.

    Article  Google Scholar 

  • OVERBY, L.R., FREDRICKSON, R.L., and FROST, D.V. 1959. Inhibition of the amino acid sugar reaction. J. Nutr. 69, 318–322.

    Google Scholar 

  • PAILTHORPE, M.T., and NICHOLS, C.H. 1972. Esr studies of the low temperature irradiation of keratin and its component amino acids. Photochem. Photobiol. 15, 465–477.

    Article  Google Scholar 

  • PIENIAZEK, D., RAKOWSKA, M., and KUNACHOWICZ, H. 1975. The participation of methionine and cysteine in the formation of bonds resistant to the action of proteolytic enzymes in heated casein. Br. J. Nutr. 34, 163–173.

    Google Scholar 

  • PROVANSAL, M.M.P., CUQ, J.L.A., and CHEFTEL, J.C. 1975. Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid cross-links and isomerization of lysine residues. J. Agric. Food Chem. 23, 938–943.

    Article  Google Scholar 

  • RACZYSNKI, G., SNOCHOWSKI, M., and BURACZEWSKI, S. 1975. Metabolism of e-(y-L-glutamyl)-L-lysine in the rat. Br. J. Nutr. 34, 291–296.

    Google Scholar 

  • RATCLIFF, M.A, JR., MEDLEY, E.E., and SIMMONDS, P.G. 1974. Pyrolysis of amino acids. Mechanistic considerations. J. Org. Chem. 39, 1481.

    Article  Google Scholar 

  • REYNIERS, J.P, WOODARD, J.C, and ALVAREZ, M.R. 1974. Cytochemical alterations in a-protein induced nephrocytomegalia. Lab. Invest. 30, 582.

    Google Scholar 

  • REYNOLDS, T.M. 1969. Noenzymatic browning sugar amine interaction. In Symposium on Foods: Carbohydrates and Their Role. Avi Publishing Co., Westport, Ct.

    Google Scholar 

  • ROUBEL, W.T., and TAPPEL, A.L. 1966A. Polymerization of proteins induced by free-radical lipid peroxidation. Arch. Biochem. Biophys. 113, 150–155.

    Article  Google Scholar 

  • ROUBEL, W.T., and TAPPEL, A.L. 1966B. Damage to proteins, enzymes, and amino acids by peroxidizing lipids. Arch. Biochem. Biophys. 113, 5–8.

    Article  Google Scholar 

  • SANDERSON, J., WALL, J.S., DONALDSON, G.L., and CAVINS, J.F. 1978. Effect of alkaline processing of corn on its amino acids. Cereal Chem. 55, 204–213.

    Google Scholar 

  • SCHAICH, K.M. 1980A. Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiation and lipid oxidation. Part II. Ultraviolet radiation and photolysis. Crc Crit. Rev. Food Sei. Nutr. 13, 131–159.

    Article  Google Scholar 

  • SCHAICH, K.M. 1980B. Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiations and lipid oxidation. Part Iii. Free radical transfer from oxidizing lipids. Crc Crit. Rev. Food Sei. Nutr. 13, 189–244.

    Article  Google Scholar 

  • SCHNACK, U., and KLOSTERMEYER, H. 1980. Thermal decomposition of a-lac-talbumin. 1. Destruction of cystine residues. Milchwissenschaft 35, 206–208.

    Google Scholar 

  • SCHROEDER, L.J., IACOBELIS, M., LEES, H., and SMITH, A.H. 1953. The effect of heat on the nutritive value of milk proteins as influenced by water and fat. J. Nutr. 50, 351–360.

    Google Scholar 

  • SCHWASS, D.E., TOVAR, R.L., and FINLEY, J.W. 1983. Absorption of altered amino acids from the intestine. Acs Symp. Ser. 234, 188–201.

    Google Scholar 

  • SEN, L.C., GONZALES-FLORES, E., FEENEY, R.E., and WHITAKER, J.R. 1977. Reactions of phosphoproteins in alkali solutions. J. Agric. Food Chem. 25, 1153.

    Article  Google Scholar 

  • SHETTY, J.K., and KINSELLA, J.E. 1980. Lysinoalanine formation in yeast proteins isolated by alkaline methods. J. Agric. Food Chem. 28, 798–800.

    Article  Google Scholar 

  • SIMMONDS, P.G., MEDLEY, E.E., RATCLIFF, M.A., JR., and SHULMAN, G.P. 1972. Thermal decomposition of aliphatic monoaminomonocarboxylic acids. Anal. Chem. 44, 2060–2066.

    Article  Google Scholar 

  • SMITH, G.G., and DESOI, B.S. 1980. Racemization of amino acids in dipeptides shows carboxyl group > amino group for nonsterically hindered residues. Science 207, 765–767.

    Article  Google Scholar 

  • SNOW, J.T., FINLEY, J.W., and FRIEDMAN, M. 1975. Oxidation of sulfhydryl groups to disulfides by sulfoxides. Biochem. Biophys. Res. Commun. 64, 441–447.

    Article  Google Scholar 

  • SUGIMURA, T., and NAGAO, M. 1979. Mutagenic factors in cooked foods. Crc Crit. Rev. Toxicol. 6, 189.

    Article  Google Scholar 

  • SUGIMURA, T., KAWACHI, T., NAGAO, M., YAHAGI, T., SEINO, Y., OKAMOTO, T., SHUDO, K., KOSUGE, T., TSUJI, K., WAKABAYASHI, K., IITAKI, Y., and IT AI, A. 1977. Mutagenic principle(s) in tryptophan and phenylalanine pyro-lysis products. Proc. Jpn. Acad. Ser., B 53, 58.

    Article  Google Scholar 

  • SVADLENKA, I., DAVIDKOVA, E., and ROSMUS, J. 1975. Interaction of malon-aldehyde with collagen. Iii. Binding site characteristic of malonaldehyde with respect to collagen. Z. Lebensm.- Unters.- Forsch. 157, 262–268.

    Google Scholar 

  • SZEBIOTKO, K, GRZESKOWIAK, D, WALKOWSKA, A., and KOPRAS, B. 1979. Changes in the content of tryptophan and available lysine during autoxidation of protein-lipid preparations. Acta Aliment. Pol. 29, 379–389.

    Google Scholar 

  • TAKAYAMA, S., HIRAKAWA, T., TANAKA, M., KATOH, Y., and SUGIMURA, T. 1979. Transformation and neoplastic development of hamster embryo cells after exposure to tryptophan pyrolysis products in tissue culture. In Naturally Occurring Carcinogens-Mutagens and Modulators of Carcinogenesis. E. C. Miller (Editor), p. 151. University Press, Baltimore, Md.

    Google Scholar 

  • TANNENBAUM, S.R., BARTH, H, and LEROUX, J.P. 1969. Loss of methionine in casein during storage with autoxidizing methyl linoleate. J. Agric. Food Chem. 17, 1353–1354.

    Article  Google Scholar 

  • TANNENBAUM, S.R., ÄHREN, M, and BATES, R.P. 1970. Solubilization of fish protein concentrate. I. An alkaline process. Food Technol. 24, 604.

    Google Scholar 

  • TOVAR, L.R. 1981. The effects of treatment with alkali on the nutritional characteristics of proteins. Ph.D. Thesis, Univ. of California, Berkeley.

    Google Scholar 

  • TOVAR, L.R., and SCHWASS, D.E. 1983. D-Amino acids in proteins: Their nutritional consequences. Acs Symp. Ser. 234, 169–185.

    Article  Google Scholar 

  • TSEN, C.C., REDDY, P.R.K., EL-SAMATHY, S.K., and GEHRKE, C.W. 1983. Effect of the Maillard browning reaction on the nutritive value of breads and pizza crusts. Acs Symp. Ser. 215, 379–394.

    Article  Google Scholar 

  • TUFTE, M.C., and WARTHESEN, J.J. 1979. Methionine stability in methionine fortified model food systems as influenced by method of methionine incorporation and by lipid oxidation. J. Food Sei. 44, 1767–1771.

    Article  Google Scholar 

  • UCHIYAMA, S., and UCHIYAMA, M. 1981. Properties of free radicals in protein and amino acid pyrolysates. J. Food Sei. 46, 113–116.

    Article  Google Scholar 

  • URABE, Y., MIYOSHI, M, and MATSUMOTO, K. 1975. The chlorinolysis of methionine derivatives. Agric. Biol. Chem. 39, 1085–1090.

    Article  Google Scholar 

  • VALDIMIROV, Y.A., ROSHCHUPKIN, D.I., and FESENKO, E.E. 1970. Photochemical reactions in amino acid residues and inactivation of enzymes during Uv irradiation. A review. Photochem. Photobiol. 11, 277.

    Google Scholar 

  • WAIBLE, P.E., and CARPENTER, K.J. 1972. Mechanism of heat damage in proteins. Iii. Studies with e-(y-L-glutamyl)-L-lysine. Br. J. Nutr. 27, 509.

    Google Scholar 

  • WALLER, G.R., and FEATHER, M.S. (Editors) 1983. The Maillard Reaction in Foods and Nutrition, Acs Symp. Ser. No. 215. American Chemical Society, Washington, Dc.

    Google Scholar 

  • WALSH, R.G., NASHEFF, A.S., and FEENEY, R.E. 1979. Intramolecular cross-linking of proteins by formation of lysinoalanine or lanthionine. Int. J. Pept. Protein Res. 14, 190–299.

    Google Scholar 

  • WEIZMANN, C, BERGMANN, E., and HIRSCHBERG, Y. 1936. Photochemical deamination of amino acids in water solution. J. Am. Chem. Soc. 58, 1675.

    Article  Google Scholar 

  • WHITAKER, J.R. 1980. Changes occurring in proteins in alkaline solutions. Acs Symp. Ser. 123, 145–164.

    Article  Google Scholar 

  • WHITAKER, J.R., and FEENEY, R.E. 1977. Behavior of O-glycosyl and O-phos-phoryl proteins in alkaline solution. In Protein Crosslinking: Nutritional and Biological Consequences. Vol. 8, M. Friedman (Editor), Vol. 8, pp. 155–175. Plenum Press, Ny.

    Google Scholar 

  • WOOD ARD, J.C. 1971A. A morphologic and biochemical study of nutritional nephro-calcinosis in female rats fed semipurified diets. Am. J. Pathol. 65, 253.

    Google Scholar 

  • WOODARD, J.C. 1971B. Relationship between the ingredients of semipurified diets and nutritional nephrocalcinosis of rats. Am. J. Pathol. 65, 269.

    Google Scholar 

  • WOODARD, J.C, and ALVAREZ, M.R. 1967. Renal lesions in rats fed diets containing alpha protein. Arch. Pathol. 84, 1153.

    Google Scholar 

  • WOODARD, J.C, and SHORT, D.D. 1977. Renal toxicity of Nє-(DL-2-amino-2-car-boxyethyl)-L-lysine (lysinoalanine) in rats. Food Cosmet. Toxicol. 15, 117.

    Article  Google Scholar 

  • WOODARD, J.C, SHORT, D.D., ALVAREZ, M.R, and REYNIERS, J.P. 1975. Biological effects of Nє-(DL-2-amino-2-carboxyethyl)-L-lysine, lysinoalanine. In Protein Nutritional Quality of Foods and Feeds. Part 2. M. Friedman (Editor), p. 595. Marcel Dekker, Ny.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finley, J.W. (1985). Environmental Effects on Protein Quality. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food During Processing. ift Basic Symposium Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1016-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1016-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1018-3

  • Online ISBN: 978-94-017-1016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics