Skip to main content

Changes in Pectin and Cellulose during Processing

  • Chapter
  • 252 Accesses

Part of the book series: ift Basic Symposium Series ((IFTBSS))

Abstract

Polysaccharides provide much of the structure which gives a wide variety of foods desirable textural properties. Cellulose, pectin, and hemicellulose are the major polysaccharide components in the cell wall of all plant foods. Due to the complexities of these polysaccharides, the even greater complexity of the plant cell wall, and numerous experimental difficulties in working with these polysaccharides, much remains to be learned in establishing detailed structure-function relationships both for biological and technological functions. However, there has been rapid progress in understanding the physical and chemical properties of polysaccharides in recent years. As new information and new techniques are applied more intensively to problems of interest to food technologists, we are likely to see considerable progress in our understanding of the chemistry of food texture. The purpose of this chapter is to review recent developments in the chemistry of plant cell wall polysaccharides, particularly pectin and cellulose, as they may relate to the texture of fruits and vegetables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALBERSHEIM, P., and BONNER, J. 1959. Metabolism and hormonal control of pectic substances. J. Biol. Chem. 234, 3105–3108.

    Google Scholar 

  • ALBERSHEIM, P., NEUKOM, H., and DEUEL, H. 1960. Splitting of pectin chain molecules in neutral solutions. Arch. Biochem. Biophys. 90, 46–51.

    Article  Google Scholar 

  • ARCHER, S.A., and FIELDING, A.H. 1975. Thermostable polygalacturonase secreted by Sclerotinia fructigena. J. Food Sci. 40, 423–424.

    Article  Google Scholar 

  • ARCHER, S.A., and FIELDING, A.H. 1975. Thermostable polygalacturonase secreted by Sclerotinia fructigena. J. Food Sci. 40, 423–424.

    Article  Google Scholar 

  • BARON, A., ROMBOUTS, F., DRILLEAU, J.F., and PILNIK, W. 1980. Purification et propriétés de la pectinesterase produite par Aspergillus niger. Lebensm.-Wiss. -Technol. 13, 330–333 (in French).

    Google Scholar 

  • BARTOLOME, L.G., and HOFF, J.E. 1972. Firming of potatoes: Biochemical effects of preheating. J. Agric. Food Chem. 20, 266–270.

    Article  Google Scholar 

  • BROWN, R.M., Jr. 1982. Cellulose and Other Natural Polymer Systems: Biogenesis, Structure and Degradation. Plenum Press, NY.

    Book  Google Scholar 

  • CESARO, A., CIANA, A., DELBEN, G., MANZINI, G., and PAOLETTI, S. 1982. Physicochemical properties of pectic acid. I. Thermodynamic evidence of a pH-induced conformational transition in aqueous solution. Biopolymers 21, 431–449.

    Article  Google Scholar 

  • CHAMBAT, G., BARNOUD, F., and JOSELEAU, J.P. 1984. Structure of the primary cell walls of suspension-cultured Rosa glauca cells. I. Polysaccharides associated with cellulose. Plant Physiol. 74, 687–693.

    Article  Google Scholar 

  • DABROWSKI, J., HANFLAND, P., and EGGE, H. 1982. Analysis of glycosphingo-lipids by high resolution proton nuclear magnetic resonance spectroscopy. Methods Enzymol. 83, 69–83.

    Article  Google Scholar 

  • DARVILL, A., MCNEIL, M., ALBERSHEIM, P., and Delmer, D.P. 1980. The primary cell walls of flowering plants. In The Biochemistry of Plants: A Comprehensive Treatise. N.E. Tolbert (Editor), Vol. 1. Academic Press, NY.

    Google Scholar 

  • DELL, A., MORRIS, H.R., EGGE, H., VON NIKOLAI, H., and STRECKER, G. 1983. Fast-atom-bombardment mass-spectrometry for carbohydrate-structure determination. Carbohydr. Res. 115, 41–52.

    Article  Google Scholar 

  • DEUEL, H., HUTSCHNEKER, K., and SOLMS, J. 1953. Selektives Verhalten von Ionenaustauschern. 3. Mitteilung über Ionenaustauscher. Z. Elektrochem. 57, 172–177 (in German).

    Google Scholar 

  • DEVRIES, J.A., VORAGEN, A.G.J., ROMBOUTS, F.M., and PILNIK, W. 1981. Extraction and purification of pectin from alcohol-insoluble solids from ripe and unripe apples. Carbohydr. Polym. 1, 117–127.

    Article  Google Scholar 

  • DEVRIES, J.A., ROMBOUTS, F.M., VORAGEN, A.G.J., and PILNIK, W. 1982. Enzymatic degradation of apple pectins. Carbohydr. Polym. 2, 25–33.

    Article  Google Scholar 

  • DEVRIES, J.A., DEN UIJL, C.H., VORAGEN, A.G.J., ROMBOUTS, F.M., and PILNIK, W. 1983A. Structural features of the neutral sugar side chains of apple pectic substances. Carbohydr. Polym. 3, 193–205.

    Article  Google Scholar 

  • DEVRIES, J.A., ROMBOUTS, F.M., VORAGEN, A.G.J., and PILNIK, W. 1983B. Distribution of methoxyl groups in apple pectic substances. Carbohydr. Polym. 3, 245–258.

    Article  Google Scholar 

  • DEVRIES, J.A., ROMBOUTS, F.M., VORAGEN, A.G.J., and PILNIK, W. 1984. Comparison of the structural features of apple and citrus pectic substances. Carbohydr. Polym. 4, 89–101.

    Article  Google Scholar 

  • FANTOZZI, P., PETRUCCIOLI, G., and MONTEDORO, G. 1977. Enzyme treatment of olive pastes after single pressing extraction. Effect of cultivar, pressing time and storage. Riv. Ital. Sostanze Grasse 54, 381–388.

    Google Scholar 

  • FISHMAN, M.L., PFEFFER, L., and BARFORD, R.A. 1984A. Degree of polymerization of sodium polygalacturonate by membrane osmometry. J. Polym. Sci. 22, 899–901.

    Google Scholar 

  • FISHMAN, M.L., PFEFFER, P.E., BARFORD, R.A., and DONER, L.W. 1984B. Studies of pectin solution properties by high-performance size exclusion chromatography. J. Agric. Food Chem. 32, 372–378.

    Article  Google Scholar 

  • GADEN, E.L., MANDELS, M.H., REESE, E.T., and SPANO, L.A. 1976. Enzymatic conversion of cellulosic materials. Biotechnol. Bioeng. Symp. 6.

    Google Scholar 

  • GARDNER, K.H. and BLACKWELL, J. 1974. The structure of native cellulose. Bio-polymers 13, 1975–2001.

    Google Scholar 

  • GHOSE, T.K. and PATHAK, A.N. 1973. Cellulase. II. Applications. Process Biochem. 8 (5), 20–21, 24.

    Google Scholar 

  • GILBERT, B.C., KING, D.M., and THOMAS, C.B. 1984. The oxidation of some polysaccharides by the hydroxyl radical: An ESR investigation. Carbohydr. Res. 125. 217–235.

    Article  Google Scholar 

  • GRANT, G.T., MORRIS, E.R., REES, D.A., SMITH, P.J.C., and THOM, D. 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32, 195–198.

    Article  Google Scholar 

  • HARRIS, J.E., and DENNIS, C. 1982. Heat stability of fungal pectolytic enzymes. J. Sci. Food Agrie. 33, 781–791.

    Article  Google Scholar 

  • HERI, W.J., NEUKOM, H., and DEUEL, H. 1961. Chromatographic fractionation of pectin on diethylaminoethylcellulose. Helv. Chim. Acta 44, 1939–1945. (in German).

    Article  Google Scholar 

  • HINTON, D.M., and PRESSEY, R. 1974. Cellulase activity in peaches during ripening. J. Food Sei. 39, 783–785.

    Article  Google Scholar 

  • HOOGZAND, C., and DOESBURG, J.J. 1961. Effect of blanching on texture and pectin of canned cauliflower. Food Technol. 15, 160–163.

    Google Scholar 

  • ISHII, S., KOHO, K., SUGIYAMA, S., and SUGIMOTO, H. 1979. Low-methoxyl pectin prepared by pectinesterase from Aspergillus japonicus. J. Food Sci. 44, 611–614.

    Article  Google Scholar 

  • JOSELEAU, J.P., CHAMBAT, G., and CHUMPITAZI-Hermoza, B. 1981. Solubilization of cellulose and other plant structural polysaccharides in iV-methylmorpholine N-oxide: An improved method for the study of cell wall constituents. Carbohydr. Res. 90, 339–344.

    Article  Google Scholar 

  • KATCHALSKY, A., and FEITELSON, J. 1954. Kinetics of alkaline hydrolysis of pectinic acids. J. Polym. Sci. 13, 385–392.

    Article  Google Scholar 

  • KAUSS, H., and HASSID, W.Z. 1967. Enzymic introduction of the methyl ester groups of pectin. J. Biol. Chem. 242, 3449–3453.

    Google Scholar 

  • KAUSS, H., SWANSON, A.L., ARNOLD, R., and ODZUCK, W. 1969. Biosynthesis of pectic substances. Localization of enzymes and products in a lipid-membrane complex. Biochim. Biophys. Acta 192, 55–61.

    Article  Google Scholar 

  • KEIJBETS, M.J., and PILNIK, W. 1974. β-Elimination of pectin in the presence of anions and cations. Carbohydr. Res. 33, 359–362.

    Article  Google Scholar 

  • KEIJBETS, M.J.H., PILNIK, W., and VAAL, J.F.A. 1976. Model studies on behaviour of pectic substances in the potato cell wall during boiling. Potato Res. 19, 289–303.

    Article  Google Scholar 

  • KNEE, M. 1973. Polysaccharides and glycoproteins of apple fruit cell walls. Phyto-chemistry 12, 637–653.

    Article  Google Scholar 

  • KNEE, M., FIELDING, A.H., ARCHER, S.A., and LABORDA, F. 1975. Enzymatic analysis of cell wall structure in apple fruit cortical tissue. Phytochemistry 14, 2213–2222.

    Google Scholar 

  • KOHN, R. 1975. Ion binding on polyuronates—alginate and pectin. Pure Appl. Chem. 42, 371–397.

    Article  Google Scholar 

  • KOHN, R., REXOVA-BENKOVA, L., LUKNAR, O., and KUNIAK, L. 1975. Cross-linked pectic acid. The effect of cross-linking on cation exchange, binding of en-dopolygalacturonase and biodegradability. Collect. Czech. Chem. Commun. 41, 1879–1893.

    Article  Google Scholar 

  • KOHN, R., REXOVA-BENKOVA, L., LUKNAR, O., and KUNIAK, L. 1976. Cross-linked pectic acid. The effect of cross-linking on cation exchange, binding of en-dopolygalacturonase and biodegradability. Collect. Czech. Chem. Commun. 41, 1879–1893.

    Article  Google Scholar 

  • KOHN, R., MARKOVIC, O., and MACHOVA, E. 1983. Deesterification mode of pectin by pectin esterases of Aspergillus foetidus, tomatoes and alfalfa. Collect. Czech. Chem. Commun. 48, 790–797.

    Article  Google Scholar 

  • KON, S., and SCHWIMMER, S. 1977. Depolymerization of polysaccharides by active oxygen species derived from a xanthine oxidase system. J. Food Biochem. 1, 141–152.

    Article  Google Scholar 

  • LAMPORT, D.T.A. 1965. The protein component of primary cell walls. Adv. Bot. Res. 2, 151–218.

    Article  Google Scholar 

  • LAMPORT, D.T.A. 1980. Structure and function of plant glycoproteins. In The Biochemistry of Plants—A Comprehensive Treatise. J. Preiss (Editor), Vol. 3, pp. 501–541. Academic Press, NY.

    Google Scholar 

  • LEE, C.Y., BOURNE, M.C., and VAN BUREN, J.P. 1979. Effect of blanching treatments on the firmness of carrots. J. Food Sci. 44, 615–616.

    Article  Google Scholar 

  • LEONE, M., LAMPARELLI, F., LANOTTE, E., LIUZZI, V.A., and PADULA, M. 1977. The use of enzymic pectocellulolytic system in olive oil making. Riv. Ital. Sostanze Grasse 54, 514–530 (in Italian).

    Google Scholar 

  • LOH, J., and BREENE, W.M. 1982. Between-species differences in fracturability loss: Comparison of the thermal behavior of pectic and cell wall substances in potato and Chinese water chestnut. J. Text. Stud. 13, 381–396.

    Article  Google Scholar 

  • MCFEETERS, R.F., BELL, T.A., and FLEMING, H.P. 1980. An endopolygalacturon-ase in cucumber fruit. J. Food Biochem. 4, 1–16.

    Article  Google Scholar 

  • MCFEETERS, R.F., FLEMING, H.P., and THOMPSON, R.L. 1985. Pectinesterase activity, pectin methylation and texture changes during storage of blanched cucumber slices. J. Food Sci. 50, 201–205, 219.

    Google Scholar 

  • MCNEIL, M., DARVILL, A.G., AMAN, P., FRANZEN, L.E., and ALBERSHEIM, P. 1982. Structural analysis of complex carbohydrates using high-performance liquid chromatography, gas chromatography, and mass spectrometery. Methods Enzymol. 83, 3–45.

    Article  Google Scholar 

  • MCNEIL, M., DARVILL, A.G., FRY, S.C., and ALBERSHEIM, P. 1984. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem. 53, 625–663.

    Article  Google Scholar 

  • MOLEDINA, K.H., HAYDAR, M., OORAIKUL, B., and HADZIYEV, D. 1981. Pectin changes in the pre-cooking step of dehydrated mashed potato production. J. Sci. Food Agric. 32, 1091–1102.

    Article  Google Scholar 

  • MORRIS, E.R., POWELL, D.A., GIDLEY, M.J., and REES, D.A. 1982. Conformations and interactions of pectins I. Polymorphism between gel and solid states of calcium polygalacturonate. J. Mol. Biol. 155, 507–516.

    Article  Google Scholar 

  • MUSSELL, H.W., and MORRE, D.J. 1969. A quantitative bioassay specific for polygalacturonases. Anal. Biochem. 28, 353–360.

    Article  Google Scholar 

  • O’NEILL, M.A., and SELVENDRAN, R.R. 1982. Isolation and partial characterization of a xyloglucan from the cell walls of Phaseolus coccineus. Carbohydr. Res. 111, 239–255.

    Article  Google Scholar 

  • PALMA, A., BULDT, G., and JOVANOVIC, S.M. 1976. Absolutes Molekulargewicht der nativen Cellulose der Alge Valonia. Makromol. Chem. 177, 1063–1072.

    Article  Google Scholar 

  • PFEFFER, P.E., DONER, L.W., HOAGLAND, P.D., and McDONALD, G.G. 1981. Molecular interactions with dietary fiber components. Investigation of the possible association of pectin and bile acids. J. Agric. Food Chem. 29, 455–461.

    Article  Google Scholar 

  • PHARR, D.M., and DICKINSON, D.B. 1973. Partial characterization of Cx cellulase and cellobiase from ripening tomato fruits. Plant Physiol. 51, 577–583.

    Article  Google Scholar 

  • PILNIK, W., and ROMBOUTS, F.M. 1978. Pectic enzymes. In Polysaccharides in Food. J.M.V. Blanchard and J.R. Mitchell (Editors), pp. 109–126. Butterworth, London.

    Google Scholar 

  • POWELL, D.A., MORRIS, E.R., GIDLEY, M.J., and REES, D.A. 1982. Conformations and interactions of pectins. II. Influence of residue sequence on chain association in calcium pectate gels. J. Mol. Biol. 155, 517–531.

    Article  Google Scholar 

  • PRESTON, R.D. 1974. Plant cell walls. In Dynamic Aspects of Plant Ultrastructure. A.W. Robards (Editor), pp. 256–309. McGraw-Hill, NY.

    Google Scholar 

  • REES, D.A. 1977. Polysaccharide Shapes. Halsted Press, NY.

    Book  Google Scholar 

  • REES, D.A., and WIGHT, A.W. 1971. Polysaccharide conformation. Part VII. Model building computations for α-1,4 galacturonan and the kinking function of L-rham-nose residues in pectic substances. J. Chem. Soc, Ser. B pp. 1366–1371.

    Google Scholar 

  • REXOVA-BENKOVA, L., and MARKOVIC, O. 1976. Pectic enzymes. Adv. Carbohydr. Chem. Biochem. 33, 323–385.

    Article  Google Scholar 

  • ROE, B., and BRUEMMER, J.H. 1981. Changes in pectic substances and enzymes during ripening and storage of “Keitt” mangos. J. Food Sci. 46, 186–189.

    Article  Google Scholar 

  • ROUAU, X., and THIBAULT, J.F. 1984. Apple juice pectic substances. Carbohydr. Polym. 4, 111–125.

    Article  Google Scholar 

  • SEALE, R., MORRIS, E.R., and REES, D.A. 1982. Interactions of alginates with univalent ions. Carbohydr. Res. 110, 101–112.

    Article  Google Scholar 

  • SELVENDRAN, R.R. 1983. The chemistry of plant cell walls. In Dietary Fibre. G.G. Birch and K.J. Parker (Editors), pp. 95–147. Applied Science Publishers, London.

    Google Scholar 

  • SHEWFELT, A.L., PAYNTER, V.A., and JEN, J.J. 1971. Textural and molecular characteristics of pectic constituents in ripening peaches. J. Food Sci. 36, 573–575.

    Article  Google Scholar 

  • SOROCHAN, V.D., DZIZENKO, A.K., BODIN, N.S., and OVODOV, Y.S. 1971. Light-scattering studies of pectic substances in aqueous solution. Carbohydr. Res. 20, 243–249.

    Article  Google Scholar 

  • SPEISER, R., EDDY, C.R., and HILLS, C.H. 1945. Kinetics of deesterification of pectin. J. Phys. Chem. 49, 563–579.

    Article  Google Scholar 

  • STEVENS, B.J.H., and SELVENDRAN, R.R. 1984. Pectic polysaccharides of cabbage (Brassica oleracea). Phytochemistry 23, 107–115.

    Google Scholar 

  • TANG, H.C.L., and McFEETERS, R.F. 1983. Relationships among cell wall constituents, calcium and texture during cucumber fermentation and storage. J. Food Sci. 48, 66–70.

    Article  Google Scholar 

  • THORNBER, J.P., and NORTHCOTE, D.H. 1962. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem in trees. 3. Xylan, glucomannan and α-cellulose fractions. Biochem. J. 82, 340–346.

    Google Scholar 

  • TOYAMA, N. 1969. Applications of cellulases in Japan. Adv. Chem. Ser. 95, 359–390.

    Article  Google Scholar 

  • VAN BUREN, J.P. 1979. The chemistry of texture in fruits and vegetables. J. Text. Stud. 10, 1–23.

    Article  Google Scholar 

  • VAN BUREN, J.P. 1980. Calcium binding to snap bean water-insoluble solids. Calcium and sodium concentrations. J. Food Sci. 45, 752–753.

    Article  Google Scholar 

  • VERSTEEG, C., ROMBOUTS, F.M., SPAANSEN, C.H., and PILNIK, W. 1980. Thermostability and orange juice cloud destabilizing properties of multiple pectinesterases from orange. J. Food Sci. 45, 969–971, 998.

    Article  Google Scholar 

  • VORAGEN, F.G.J., TIMMERS, J.P.J., LINSSEN, J.P.H., SCHOLS, H.A., and PILNIK, W. 1983. Methods of analysis for cell-wall polysaccharides of fruit and vegetables. Z. Lebensm.-Unters. -Forsch. 177, 251–256.

    Article  Google Scholar 

  • WAEGHE, T.J., DARVILL, A., MCNEIL, M., and ALBERSHEIM, P. 1983. Determination, by methylation analysis, of the glycosyl-linkage compositions of microgram quantities of complex carbohydrates. Carbohydr. Res. 123, 281–304.

    Article  Google Scholar 

  • WALLNER, S.J., and BLOOM, H.L. 1977. Characteristics of tomato cell wall degradation in vitro. Plant Physiol. 60, 207–210.

    Article  Google Scholar 

  • WILEY, R.C., and LEE, Y.S. 1970. Modifying texture of processed apple slices. Food Technol. 24, 1168–1170.

    Google Scholar 

  • WILKE, C.R. 1975. Cellulose as a chemical and energy source. Biotechnol. Bioeng. Symp. 5.

    Google Scholar 

  • ZETELAKI-HORVATH, K., and GATAI, K. 1977. Disintegration of vegetable tissues by endopolygalacturonase. Acta Aliment. 6, 227–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

McFeeters, R.F. (1985). Changes in Pectin and Cellulose during Processing. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food During Processing. ift Basic Symposium Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1016-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1016-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1018-3

  • Online ISBN: 978-94-017-1016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics