Skip to main content

Summary

The freshwater polyp, Hydra has long been used as a model for studying mechanisms controlling pattern formation and the axial polarity of the body column. It has been suggested that body patterning is dependent on the presence of internal morphogens. A variety of different candidate molecules, in Hydra and other cnidarians, have been proposed as putative morphogens. They are derived from different cellular sources and the evidence for their ability to act as morphogens is critically assessed. The actions of any morphogens will be mediated by signal transduction pathways and such pathways have been demonstrated in cnidarians. The phosphatidylinositol-protein kinase C system appears to be the major pathway involved in pattern formation. Cnidarians are able to respond to external cues which trigger key events in their life cycle, such as metamorphosis. Internal neurohormones, particularly members of the GLWamide family of neuropeptides, transmit the signals to all parts of the body and the signalling cascades involved in these events have been explored. Colonial forms possess the ability to recognise each other as self or non-self. Interactions between neighbouring colonies lead either to fusion or to the destruction of one of the colonies. The phenomenon, which may be linked to the competition for living space, is reminiscent of the allorecognition/allorejection responses observed in other invertebrates and vertebrates. The presence of these mechanisms in such simple organisms as cnidarians suggests that they arose early in evolution. To date, the signalling systems involved in the behaviours in cnidarians have not been studied in any depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P.A., and Schwab, W.E. (1982) Recent advances and model systems in coelenterate neurobiology. Progress in Neurobiology 19, 213–236.

    Article  PubMed  CAS  Google Scholar 

  • Ballard, W.W. (1942) The mechanism for synchronous spawning in Hydractinia and Pennaria. Biological Bulletin 82, 329–339.

    Article  Google Scholar 

  • Barnekow, A., and Müller, W.A. (1986) An src-related tyrosine kinase activity in the hydroid, Hydractinia echinata. Differentiation 33, 29–33.

    Article  CAS  Google Scholar 

  • Berking, S. (1977) Analysis of early stages of budding in Hydra by means of an endogenous inhibitor. Wilhelm Roux’s Archives of Developmental Biology 182, 117–129.

    Article  Google Scholar 

  • Berking, S. (1979) Analysis of head and foot formation in Hydra by means of an endogenous inhibitor. Wilhelm Roux’s Archives of Developmental Biology 186, 189–210.

    Article  Google Scholar 

  • Berking, S. (1986a) Transmethylation and control of pattern formation in Hydrozoa. Differentiation 32, 10–16.

    Article  CAS  Google Scholar 

  • Berking, S. (1986b) Is homarine a morphogen in the marine hydroid Hydractinia? Roux’s Archives of Developmental Biology 195, 33–38.

    Article  CAS  Google Scholar 

  • Berking, S. (1987) Homarine (N-methylpicolinic acid) and trigonelline (N-methylnicotinic acid) appear to be involved in pattern control in a marine hydroid. Development 99, 211–220.

    PubMed  CAS  Google Scholar 

  • Berking, S. (1988) Taurine found to stabilize the larval state is released upon induction of metamorphosis in the hydrozoan Hydractinia. Roux’s Archives of Developmental Biology 197, 321–327.

    Article  CAS  Google Scholar 

  • Berking, S. (1997) Pattern formation in Hydrozoa. Naturwissenschaften 84, 381–388.

    Article  CAS  Google Scholar 

  • Berking, S. (1998) Hydrozoa metamorphosis and pattern formation. Current Topics in Developmental Biology 38, 81–131.

    Article  PubMed  CAS  Google Scholar 

  • Bodenmüller, H., and Schaller, H.C. (1981) Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature 293, 579–580.

    Article  PubMed  Google Scholar 

  • Burke, R.D. (1983) The induction of metamorphosis in marine invertebrate larvae. Canadian Journal of Zoology 61, 1701–1719.

    Article  Google Scholar 

  • Buss, L.W. (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proceedings of the National Academy of Sciences, USA 79, 5337–5341.

    Article  CAS  Google Scholar 

  • Buss, L.W., and Grosberg, R.K. (1990a) Morphogenetic basis for phenotypic differences in hydroid competitive behaviour. Nature 343, 60–63.

    Article  Google Scholar 

  • Buss, L.W., and Grosberg, R.K. (1990b) Morphological variation, morphogenetic potential, and the regulation of hydroid competitive ability. Nature 343, 63–66.

    Article  Google Scholar 

  • Buss, L.W., McFadden, C., and Keene, D.R. (1984) Biology of hydractiniid hydroids. 2. Histocompatibility effector systems/competitive mechanisms mediated by nematocyst discharge. Biological Bulletin 167, 139–158.

    Article  Google Scholar 

  • Edwards, N.C., Thomas, M.B., Long, B.A., and Amyotte, S.J. (1987) Catecholamines induce metamorphosis in the hydrozoan Halochordyle disticha but not in Hydractinia echinata. Roux’s Archives of Developmental Biology 196, 381–384.

    Article  CAS  Google Scholar 

  • Frank, U., and Rinkevich, B. (1994) Nontransitive patterns of historecognition phenomena in the Red Sea hydrocoral Millepora dichotoma. Marine Biology 118, 723–729.

    Article  Google Scholar 

  • Frank, U., Bak, R.P.M., and Rinkevich, B. (1996) Allorecognition responses in the soft coral Parerthropodium fulvum fulvum from the Red Sea. Journal of Experimental Marine Biology and Ecology 197, 191–201.

    Article  Google Scholar 

  • Frank, U., Brickner, I., Rinkevich, B., Loya, Y., Bak, R.P.M., Achituv, Y., and Ilan, M. (1995) Allogeneic and xenogeneic interactions in reef-building corals may induce tissue growth without calcification. Marine Ecology — Progress Series 124, 181–188.

    Article  Google Scholar 

  • Frank, U., Oren, U., Loya, Y., and Rinkevich, B. (1997) Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proceedings of the Royal Society of London Series B — Biological Sciences 264, 99–104.

    Article  Google Scholar 

  • Freeman, G., and Ridgway, E.B. (1987) Endogenous photoproteins, calcium channels and calcium transients during metamorphosis in hydrozoans. Roux’s Archives of Developmental Biology 196, 30–50.

    Article  CAS  Google Scholar 

  • Freeman G., and Ridgway, E.B. (1990) Cellular and intracellular pathways mediating the metamorphic stimulus in hydrozoan planulae. Roux’s Archives of Developmental Biology 199, 63–79.

    Article  Google Scholar 

  • Gajewski, M., and Plickert, G. (1999) Pattern formation in the hydroid Hydractinia echinata as modulated by a putative morphogen — differential display of spatial expression patterns of selected genes. 13th Scientific Meeting of the Gesellschaft fur Entwicklungsbiologie, abstract.

    Google Scholar 

  • Gajewski, M., Leitz, T., Schlosser, J., and Plickert, G. (1996) Lwamides from Cnidarians constitute a novel family of neuropeptides with morphogenetic activity. Roux’s Archives of Developmental Biology 205, 232–242.

    Article  CAS  Google Scholar 

  • Galliot, B. (1996) Signaling molecules in regenerating hydra. Bioessays 19, 37–46.

    Article  Google Scholar 

  • Gierer, A., and Meinhardt, H. (1972) A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Grens, A., Shimizu, H., Hoffmeister, S.A.H., Bode, H.R., and Fujisawa, T. (1999) The novel signal peptides, pedibin and Hym-346, lower positional value thereby enhancing foot formation in hydra. Development 126, 517–524.

    PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen, C.J.P. (1979) Properties of the foot activator from hydra. Cell Differentiation 8, 267–273.

    Article  CAS  Google Scholar 

  • Grimmelikhuijzen, C.J., and Westfall, J.A. (1995) The nervous systems of Cnidarians. In: O. Breidbach and W. Kutsch (eds.) The Nervous Systems of Invertebrates: an Evolutionary and Comparative Approach. Birkhauser Verlag, Basel, pp. 7–24.

    Chapter  Google Scholar 

  • Grosberg, R.K. (1988) The evolution of allorecognition specificity in clonal invertebrates. Quarterly Review of Biology 63, 377–412.

    Article  Google Scholar 

  • Hampe, W., Urny, J., Franke, I., Hoffmeister-Ullereich, S.A.H., Herrmann, D., Petersen, C.M., Lohmann, J., and Schaller, H.C. (1999) A head-activator binding protein is present in hydra in a soluble and a membrane-bound form. Development 126, 4077–4086.

    Google Scholar 

  • Hassel, M. (1998) Upregulation of Hydra vulgaris cPKC gene is tightly coupled to the differentiation of head structures. Development Genes and Evolution 207, 489–501.

    Article  PubMed  CAS  Google Scholar 

  • Hassel, M., and Bieller A. (1996) Stepwise transfer from high to low lithium concentrations increase the head-forming potential in Hydra vulgaris and possibly activates the PI cycle. Developmental Biology 177, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Hassel, M., Bridge, D.M., Stover, N.A., Kleinholz, H., and Steele, R.E. (1998) The level of expression of a protein kinase C gene may be an important component of the patterning process in Hydra. Development Genes and Evolution 207, 502–514.

    Article  CAS  Google Scholar 

  • Hastings, J.W. (1996) Chemistry and colors of bioluminescent reactions: a review. Gene 173, 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Hatta, M., Takahashi, T., Yum, S., Hoffmeister, S., and Fujisawa, T. (1999) Hym-330 enhances bud formation in Hydra. In: C.N. David and T.C.G. Bosch (eds.) 8th International Workshop on Hydroid Development. Abstract, p. 109.

    Google Scholar 

  • Hauenschild, C. (1954) Genetische and entwicklungsphysiologische Untersuchungen über Intersexualitt und Gewebeverträglichkeit bei Hydractinia echinata Flem. Wilhelm Roux’ Archiv fur Entwicklungsmechanik der Organism 147, 1–41.

    Article  Google Scholar 

  • Hauenschild, C. (1956) Über die Vererbung einer Gewebeverträglichkeits-Eigenschaft bei dem Hydroidpolypen Hydractinia echinata. Zeitschrift fur Naturforschung 116, 132–138.

    Google Scholar 

  • Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., Rothbacher, U., and Holstein, T.W. (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189.

    Article  CAS  Google Scholar 

  • Hobmayer, E., Holstein, T.W., and David, C.N. (1990) Tentacle morphogenesis in Hydra. I. The role of head activator. Development 109, 887–895.

    Google Scholar 

  • Hoffmeister, S.A.H. (1996) Isolation and characterization of two new morphogenetically active peptides from Hydra vulgaris. Development 122, 1941–1948.

    CAS  Google Scholar 

  • Hoffmeister, S.A.H., and Schaller, H.C. (1987) Head activator and head inhibitor are signals for nerve cell differentiation in hydra. Developmental Biology 122, 72–77.

    Article  Google Scholar 

  • Hoffmeister-Ullerich, S.A.H., and Herrmann, D. (1999) Cloning and expression pattern of the foot differentiation stimulating peptide pedibin in Hydra vulgaris. In: C.N. David and T.C.G. Bosch (eds.) 18th International Workshop on Hydroid Development. Abstract, p. 103.

    Google Scholar 

  • Holstein, T., Schaller, H.C., and David, C.N. (1986) Nerve cell differentiation in hydra requires two signals. Developmental Biology 115, 9–17.

    Article  Google Scholar 

  • Javois, L.C., and Tombe, V.K. (1991) Head activator does not qualitatively alter head morphology in regenerates of Hydra oligactis. Roux’s Archives of Developmental Biology 199, 402–408.

    Article  Google Scholar 

  • Kato, T., Kumanireng, A. S., Ichinose, I., Kitahara, Y., Kakinuma, Y., Nishihira, M., and Kato, M. (1975) Active components of Sargassum tortile affecting the settlement of swimming larvae of Coryne uchidai. Experientia 31, 433–434.

    Article  CAS  Google Scholar 

  • King, M.G., and Spencer, A.N. (1979) Gap and septate junctions in the excitable endoderm of Polyorchis penicillatus (Hydrozoa, Anthomedusae). Journal of Cell Science 36, 391–400.

    PubMed  CAS  Google Scholar 

  • Kostrouch, Z., Kostrouchowa, M., Love, W., Jannini, E., Piatigorsky, J., and Rall, J. (1998) Retinoic acid X receptor in the diploblast, Tripedalia cystophora. Proceedings of the National Academy of Sciences, USA 95, 13442–13447.

    Google Scholar 

  • Kroiher, M., and Plickert, G. (1992) Analysis of pattern formation during embryonic development of Hydractinia echinata. Roux’s Archives of Developmental Biology 201, 95–104.

    Article  Google Scholar 

  • Lange, R.G., and Müller, W.A. (1991) SIF, a novel morphogenetic inducer in hydrozoa. Developmental Biology 147, 121–132.

    Article  PubMed  CAS  Google Scholar 

  • Lange, R.G., Plickert, G., and Müller, W.A. (1989) Histoincompatibility in Hydractinia echinata: analysis of the mechanisms of rejection. Journal of Experimental Zoology 249, 284–292.

    Article  Google Scholar 

  • Lange, R.G., Dick, H.H., and Müller, W.A. (1992) Specificity and early ontogeny of historecognition in the hydroid Hydractinia echinata. Journal of Experimental Zoology 262, 307–316.

    Article  Google Scholar 

  • Leddy, S.V., and Greene, D.R. (1990) Historecognition in the Cnidaria. In: G.W. Warr and N. Cohen (eds.) Phylogenies of Immune Functions. CRC Press, Boca Raton, pp. 103–116.

    Google Scholar 

  • Leitz, T. (1993) Biochemical and cytological bases of metamorphosis in Hydractinia echinata. Marine Biology 116, 559–564.

    Article  CAS  Google Scholar 

  • Leitz, T. (1997) Induction of settlement and metamorphosis of Cnidaria larvae: signals and signal transduction. Invertebrate Reproduction and Development 31, 109–122.

    Article  Google Scholar 

  • Leitz, T. (1998a) Induction of metamorphosis of the marine hydrozoan Hydractinia echinata Fleming, 1828. Biofouling 12, 173–187.

    Article  Google Scholar 

  • Leitz, T. (1998b) Metamorphosin A and related compounds: a novel family of neuropeptides with morphogenetic activity. Annals of the New York Academy of Sciences 839, 105–110.

    Article  CAS  Google Scholar 

  • Leitz, T., and Müller, W.A. (1987) Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata Fleming. Developmental Biology 121, 82–89.

    Article  PubMed  CAS  Google Scholar 

  • Leitz, T., and Klingmann, G. (1990) Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Roux’s Archives of Developmental Biology 199, 107–113.

    Article  CAS  Google Scholar 

  • Leitz, T., and Wagner, T. (1993) The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata. Marine Biology 115, 173–178.

    Article  Google Scholar 

  • Leitz, T., Morand, K., and Mann, M. (1994) Metamorphosin A, a novel peptide controlling development of the lower metazoan Hydractinia echinata. Developmental Biology 163, 440–446.

    Article  CAS  Google Scholar 

  • Leitz, T., Beck, H., Stephan, M., Lehmann, W.D., DePetrocellis, L., and DiMarzo, V. (1994a) Possible involvement of arachidonic acid and eicosanoids in metamorphic events in Hydractinia echinata (Coelenterata; Hydrozoa). Journal of Experimental Zoology 269, 422–431.

    Article  PubMed  CAS  Google Scholar 

  • Leitz, T., Müller, W., DePetrocellis, L., and Di Marzo, V. (1994b) Enantiospecific synthesis of bioactive hydroxyeicosatetraenoic acids (HETEs) in Hydra magnipapillata. Biochimica et Biophysica Acta 1213, 215–223.

    Article  CAS  Google Scholar 

  • Lentz, T. (1965) Hydra: Induction of supernumerary heads by isolated neurosecretory granules. Science 150, 633–635.

    CAS  Google Scholar 

  • Lesh, G.E., and Burnett, A.L. (1966) An analysis of the chemical control of polarized form in Hydra. Journal of Experimental Zoology 163, 55–78.

    Article  CAS  Google Scholar 

  • Leviev, I., and Grimmelikhuijzen, C.J.P. (1995) Molecular cloning of a preprohormone from sea anemones containing numerous copies of a metamorphosis-inducing neuropeptide: A likely role for dipeptidyl aminopeptidase in neuropeptide precursor processing. Proceedings of the National Academy of Sciencs, USA 92, 11647–11651.

    Article  CAS  Google Scholar 

  • Lohmann, J.U., and Bosch, T.C.G. (2000) The novel peptide HEAVY specifies apical fate in a simple radially symmetrical metazoan. Genes and Development 14, 2771–2777.

    Article  PubMed  CAS  Google Scholar 

  • Lubbock, R. (1980) Clone-specific cellular recognition in a sea anemone. Proceedings of the National Academy of Sciences, USA 77, 6667–6669.

    Article  CAS  Google Scholar 

  • Lubbock, R., and Shelton, G.A. (1981) Electrical activity following cellular recognition of self and non-self in a sea anemone. Nature 289, 59–60.

    Article  PubMed  CAS  Google Scholar 

  • McCauley, D.W. (1997) Serotonin plays an early role in the metamorphosis of the hydrozoan Phialidium gregarium. Developmental Biology 190, 229–240.

    Article  CAS  Google Scholar 

  • MacWilliams, H.K. (1983a) Hydra transplantation phenomena and the mechanism of hydra head regeneration. 1. Properties of the head inhibition. Developmental Biology 96, 217–238.

    Article  PubMed  CAS  Google Scholar 

  • MacWilliams, H.K. (1983b) Hydra transplantation phenomena and the mechanism of hydra head regeneration. 2. Properties of the head activation. Developmental Biology 96, 239–257.

    Article  PubMed  CAS  Google Scholar 

  • MacWilliams, H.K., and Kafatos, F.C. (1970) The basal inhibition in Hydra may be mediated by a diffusing substance. American Zoologist 14, 633–645.

    Google Scholar 

  • Martinez, D.E., Dirksen, M.-L., Bode, P.M., Jamrich, M., Steele, R.E., and Bode, H.R. (1997) Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. Developmental Biology 192, 523–536.

    CAS  Google Scholar 

  • Meinhardt, H. (1993) A model for pattern formation of hypostome, tentacles, and foot in hydra: How to form structures close to each other, how to form them at a distance. Developmental Biology 157, 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.L. (1972) Gel filtration of the sperm attractants of some marine hydrozoa. Journal of Experimental Zoology 82, 281–298.

    Article  Google Scholar 

  • Miller, R.L. (1980) Species specificity of sperm chemotaxis in the hydromedusae. In: P. Tardent and R. Tardent (eds.) Developmental and Cellular Biology of Coelenterates. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 89–94.

    Google Scholar 

  • Miller, R.L., and O’Rand, M.G. (1975) Utilization of chemical specificity during fertilization in the hydrozoa. In: B.A. Afzelius (ed.) The Functional Anatomy of the Spermatozoon. Pergamon Press, New York, pp. 15–26.

    Google Scholar 

  • Mokady, O. (1996) Occam’s razor, invertebrate allorecognition and IG superfamily evolution. Research in Immunology 147, 45–50.

    Article  Google Scholar 

  • Mokady, O., and Buss, L.W. (1996) Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics 143, 823–827.

    PubMed  CAS  Google Scholar 

  • Müller, W.A. (1964) Experimentelle Untersuchungen ber Stockentwicklung, Polypendifferenzierung and Sexualchimären bei Hydractinia echinata. Wilhelm Roux’ Archiv fur Entwicklungsmechanik der Organism 155, 181–268.

    Article  Google Scholar 

  • Müller, W.A. (1969) Die Steuerung des morphogenetischen Fliessgleichgewichts in den Polypen von Hydractinia echinata. II. Chemisch-analytische Untersuchungen. Wilhelm Roux’s Archives of Developmental Biology 163, 357–374.

    Article  Google Scholar 

  • Müller, W.A. (1973) Induction of metamorphosis by bacteria and ions in the planulae of Hydractinia echinata; an approach to the mode of action. Publications. Seto Marine Biological Laboratory 20, 195–208.

    Google Scholar 

  • Müller, W.A. (1984) Retinoids and pattern formation in a hydroid. Journal of Embryology and Experimental Morphology 81, 253–271.

    PubMed  Google Scholar 

  • Müller, W.A. (1985) Tumor-promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia. Differentiation 29, 215–222.

    Google Scholar 

  • Müller, W.A. (1989) Diacylglycerol-induced multihead formation in Hydra. Development 105, 309–316.

    Google Scholar 

  • Müller, W.A. (1990) Ectopic head and foot formation in Hydra: Diacylglycerol-induced increase in positional value and assistance of the head in foot formation. Differentiation 42, 131–143.

    Article  PubMed  Google Scholar 

  • Müller, W.A. (1991) Stimulation of head-specific nerve cell formation in Hydra by pulses of diacylglycerol. Developmental Biology 147, 460–463.

    Article  PubMed  Google Scholar 

  • Müller, W.A. (1995a) Competition for factors and cellular resources as a principle of pattern formation in Hydra. I. Increase of the potentials for head and bud formation and rescue of the regeneration-deficient mutant reg-16 by treatment with diacylglycerol and arachidonic acid. Developmental Biology 167, 159–174.

    Article  PubMed  Google Scholar 

  • Müller, W.A. (1995b) Competition for factors and cellular resources as a principle of pattern formation in Hydra. II. Assistance of foot formation by heads and buds and a new model of pattern control. Developmental Biology 167, 175–189.

    Article  PubMed  Google Scholar 

  • Müller, W.A. (1996a) Competition-based head versus foot decision in chimeric hydras. International Journal of Developmental Biology 40, 1133–1139.

    PubMed  Google Scholar 

  • Müller, W.A. (1996b) Pattern formation in the immortal Hydra. Trends in Genetics 12, 91–96.

    Article  Google Scholar 

  • Müller, W.A., and Plickert, G. (1982) Quantitative analysis of an inhibitory gradient field in the hydrozoan stolon. Wilhelm Roux’s Archives of Developmental Biology 191, 56–63.

    Article  Google Scholar 

  • Müller, W.A., Hauch, A., and Plickert, G. (1987) Morphogenetic factors in hydroids. I. Stolon tip activation and inhibition. Journal of Experimental Zoology 243, 111–124.

    Article  Google Scholar 

  • Müller, W.A., Leitz, T., Stephan, M., and Lehmann, W.D. (1993) Arachidonic acid and the control of body pattern in Hydra. Roux’s Archives of Developmental Biology 202, 70–76.

    Article  Google Scholar 

  • Müller, W.A., Bartsch, C., Bartsch, H., Maidonis, I., and Bayer, E. (1998) Low-molecular-weight hormonal factors that affect head formation in Hydra. International Journal of Developmental Biology 42, 825–828.

    Google Scholar 

  • Neubauer, K.H., Christians, S., Hoffmeister, S.A.H., Kreger, S., and Schaller, H.C. (1991) Characterization of two types of head activator receptor on hydra cells. Mechanisms of Development 33, 39–48.

    Article  Google Scholar 

  • Plickert, G. (1987) Low-molecular-weight factors from colonial hydroids affect pattern formation. Roux’s Archives of Developmental Biology 196, 248–256.

    Article  CAS  Google Scholar 

  • Plickert, G. (1989) Proportion-altering factor (PAF) stimulates nerve cell formation in Hydractinia echinata. Cell Differentiation and Development 26, 19–28.

    Article  CAS  Google Scholar 

  • Plickert, G. (1991) A low-molecular weight factor from colonial hydroids affects body proportioning and cell differentiation. Hydrobiologia 216/217, 83–89.

    Google Scholar 

  • Plickert, G., Heringer, A., and Hiller, B. (1987) Analysis of spacing pattern in a periodic pattern. Developmental Biology 120, 399–411.

    Article  Google Scholar 

  • Plickert, G., Kroiher, M., and Munck, A. (1988) Cell proliferation and early differentiation in Hydractinia echinata. Development 103, 795–803.

    CAS  Google Scholar 

  • Rinkevich, B. (1996) Links between alloimmune responses and their genetic background in colonial urochordates and cnidarians: evidence for the recognition of nonself as opposed to self. In: J.S. Stolen et al. (eds.) Modulators of Immune Responses: the Evolutionary Trail. SOS Publishers, Fair Haven, pp. 1–13.

    Google Scholar 

  • Rinkevich, B., and Weissmann, I.L. (1987) Chimeras in colonial invertebrates: a synergistic symbiosis or somatic and germ cell parasitism? Symbiosis 4, 117–134.

    Google Scholar 

  • Rinkevich, B., Frank, U., Bak, R.P.M., and Muller, W.E.G. (1994) Alloimmune responses between Acropora hemprichi conspecifics: nontransitive patterns of overgrowth and delayed cytotoxicity. Marine Biology 118, 731–737.

    Article  Google Scholar 

  • Schaller, H.C. (1979) Neuropeptides in hydra. Trends in Neurosciences 1, 120–122.

    Article  Google Scholar 

  • Schaller, H.C., and Gierer, A. (1973) Distribution of the head-activating substance in hydra and its localization in membranous particles in nerve cells. Journal of Embryology and Experimental Morphology 29, 39–52.

    PubMed  CAS  Google Scholar 

  • Schaller, H.C., and Bodenmuller, H. (1981) Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proceedings of the National Academy of Sciences, USA 78, 7000–7004.

    Article  CAS  Google Scholar 

  • Schaller, H.C., and Bodenmüller, H. (1987) Neurohormones from hydra. In: G. Adelman (ed.) Encyclopaedia of Neuroscience. Birkhäuser, Boston, pp. 505–506.

    Google Scholar 

  • Schaller, H.C., Hoffmeister, S.A.H., and Dubel, S. (1989) Role of the neuropeptide head activator for growth and development in hydra and man. Development 107 (Supplement), 99–107.

    PubMed  CAS  Google Scholar 

  • Schmid, V., and Plickert, G. (1990) The proportion altering factor (PAF) and the in vitro trans- differentiation of isolated striated-muscle of jellyfish into nerve-cells. Differentiation 44, 95–102.

    Google Scholar 

  • Schmidt, T., Grimmelikhuijzen, C.J.P., and Schaller, H.C. (1980) Morphogenetic substances in hydra. In: P. Tardent and R. Tardent (eds.) Development and Cellular Biology of Coelenterates. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 395–399.

    Google Scholar 

  • Schwoerer-Böhning, B., Kroiher, M., and Müller, W.A. (1990) Signal transmission and covert prepattern in the metamorphosis of Hydractinia echinata (Hydrozoa). Roux’s Archives of Developmental Biology 198, 245–251.

    Article  Google Scholar 

  • Shimomura, O., and Johnson, F.H. (1975) Chemical nature of bioluminescence systems in coelenterates. Proceedings of the National Academy of Sciences, USA 72, 1546–1549.

    Article  CAS  Google Scholar 

  • Shostak, S. (1972) Inhibitory gradients of head and foot regeneration in Hydra viridis. Developmental Biology 28, 620–633.

    Article  CAS  Google Scholar 

  • Stearns, T. (1995) Green fluorescent protein. The green revolution. Current Biology 5, 362–364.

    Article  Google Scholar 

  • Sugiyama, T., and Fujisawa, T. (1977) Genetic analysis of developmental mechanisms in Hydra. I. Sexual reproduction of Hydra magnipapillata and isolation of mutants. Development Growth and Differentiation 19, 187–200.

    Article  Google Scholar 

  • Takahashi, T., Muneoka, Y., Lohmann, J., deHaro, M.S.L., Solleder, G., Bosch, T.C.G., David, C.N., Bode, H.R., Koizumi, O., Shimizu, H., Hatta, M., Fujisawa, T., and Sugiyama, T. (1997) Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proceedings of the National Academy of Sciences, USA 94, 1241–1246.

    Article  CAS  Google Scholar 

  • Turing, A. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237, 37–72.

    Article  Google Scholar 

  • Webster, G. (1971) Morphogenesis and pattern formation in hydroids. Biological Reviews 46, 1–46.

    Article  Google Scholar 

  • Westfall, I.A. (1996) Ultrastructure of synapses in the first-evolved nervous systems. Journal of Neurocytology 25, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Wodarz, A., and Nusse, R. (1998) Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology 14, 59–88.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L., Clarke, M.R.B., and Hornbruch, A. (1972) Positional signalling along hydra. Nature, New Biology 239, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L., Hornbruch, A., and Clarke, M.R.B. (1974) Positional information and positional signalling in hydra. American Zoologist 14, 647–663.

    Google Scholar 

  • Yoshida, M. (1959) Spawning in Coelenterates. Experientia 15, 11.

    Article  Google Scholar 

  • Yund, P.O., Cunningham, C.W., and Buss, L.W. (1987) Recruitment and postrecruitment interactions in a colonial hydroid. Ecology 68, 971–982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, W. (2004). Signalling Systems in Cnidaria. In: Fairweather, I. (eds) Cell Signalling in Prokaryotes and Lower Metazoa. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0998-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0998-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6483-7

  • Online ISBN: 978-94-017-0998-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics