Skip to main content

Classical Embeddings of Schrödinger’s Equation and Non-Locality

  • Conference paper
Causality and Locality in Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 97))

  • 599 Accesses

Abstract

Schrödinger’s equation has been recently derived as a continuum approximation to the propagation of second order effects in Brownian processes on discrete lattices. Such derivations give an alternative context for Schrödinger’s equation apart from it’s context in Quantum mechanics. In the new context, the underlying stochastic model is completely ‘realist’ and wave functions are observable. A simple version of this is considered in light of locality, and non-locality is seen to be an artifact of the continuum limit. Modifications of this result for relativistic systems, and possible modifications for microscopic models of quantum mechanics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Jeffers, S. Roy, JP Vigier G Hunter, The Present Status of the Quantum Theory of Light Kluwer Academic

    Google Scholar 

  2. Ord, G. N. (1996). The Schrödinger and diffusion propagators coexisting on a lattice. J. Phys. A, 29: L123 - L128.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ord, G. N. and Deakin, A. S. (1996). Random walks, continuum limits and Schrödinger’s equation. Phys. Rev. A, 54: 3772–3778.

    Article  ADS  Google Scholar 

  4. Feynman, R. P. Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals McGraw-Hill.

    Google Scholar 

  5. Marc Kac (1974), ‘A Stochastic Model Related to the Telegrapher’s Equation’ Rocky Mountain Journal of Mathematics, 4.

    Google Scholar 

  6. Ord, G. N. (1996). Schrödinger and dirac free particle equations without quantum mechanics. Annals of Physics, 250: 51–62.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Feynman, R.P. (1948). Space-time approach to non-relativistic quantum mechanics Rev. Mod. Phys, 20: 367–387.

    Article  MathSciNet  ADS  Google Scholar 

  8. Holland, P. R. (1993). The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics Cambridge University Press.

    Google Scholar 

  9. El Naschie, M., Nottale, L., Athel, S. A., Ord, G. (1996a). Fractal space-time and cantorian geometry in quantum mechanics. Chaos, Solitons and Fractals, 7 (6).

    Google Scholar 

  10. El Naschie, M. and Prigogine, I. (1996). Time symmetry breaking in classical and quantum mechanics. Chaos, Solitons and Fractals, 7 (4).

    Google Scholar 

  11. El Naschie, M., Rössler, O., Ord, G. (1996b). Chaos, information and diffusion in quantum physics. Chaos, Solitons and Fractals, 7 (5).

    Google Scholar 

  12. El Naschie, M., Rössler, O. E., Prigogine, I. (1995). Quantum Mechanics, Diffusion and Chaotic Fractals Pergamon Press.

    Google Scholar 

  13. G. N. Ord, ‘A Classical Analog of Quantum Phase’, Int.J.Theo.Phys. 31 (1992) 1177–1195.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. N. Ord, ‘Quantum Interference from Charge Conservation’, Phys. Lett. A 173 (1993) 343–346.

    Article  MathSciNet  ADS  Google Scholar 

  15. D. G. C. McKeon and G. N. Ord, ‘Classical Time reversal and the Dirac Equation’, Phys. Rev. Lett. 69 (1992) 3–4.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Feynman R P., Phys. Rev. 74 (1948) 939 946.

    ADS  Google Scholar 

  17. Stuckelberg, E. C. G., Helvetica Physica Acta, 15 (1942) 23.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ord, G.N. (1998). Classical Embeddings of Schrödinger’s Equation and Non-Locality. In: Hunter, G., Jeffers, S., Vigier, JP. (eds) Causality and Locality in Modern Physics. Fundamental Theories of Physics, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0990-3_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5092-2

  • Online ISBN: 978-94-017-0990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics