Skip to main content

Hydrodynamical Reformulation and Quantum Limit of the Barut-Zanghi Theory

  • Conference paper
Causality and Locality in Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 97))

  • 599 Accesses

Abstract

The Barut-Zanghi (BZ) classical theory for the relativistic extended electron relates spin to zitterbewegung (zbw). The BZ equations are the starting point for recent work about electron-spin using Clifford algebra. This approach is suited to a hydrodynamical reformulation of the BZ theory. Working with a “probabilistic fluid”, we reinterpret the original classical spinors as wave-functions for the electron. We can “quantize” the BZ theory by employing the tensorial language. “Quantizing” the BZ theory, however, does not lead to the Dirac equation, but rather to a nonlinear, Dirac—like equation, which can be regarded as the “quantum limit” of the BZ classical theory. Moreover, a new variational approach to the BZ probabilistic fluid shows that it is a typical “Weyssenhoff fluid”, while the Hamilton-Jacobi equation (linking mass, spin and zbw frequency together) appears to be nothing but a special case of the de Broglie energy—frequency relation. Finally, after having discussed the remarkable relation existing between the gauge transformation U(1) and a general rotation on the spin plane, we clarify the two-valuedness nature of the fermionic wave-function, and the parity and charge conjugation transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Compton: Phys. Rev. 14 (1919) 20, 247; and refs. therein.

    Google Scholar 

  2. G.E. Uhlenbeck and S.A. Goudsmit: Nature 117 (1926) 264.

    Google Scholar 

  3. J.Frenkel: Z. Phys. 37 (1926) 243.

    Article  ADS  MATH  Google Scholar 

  4. P.A.M. Dirac: The principles of quantum mechanics (Claredon; Oxford, 1958), 4th edition, p. 262;

    Google Scholar 

  5. J. Maddox: “Where Zitterbewegung may lead”, Nature 325 (1987) 306;

    Google Scholar 

  6. W.H. Bostick: “Hydromagnetic model of an elementary particle”, in Gravity Res. Found. Essay Contest (1958 and 1961 ).

    Google Scholar 

  7. D. Gutkowski, M. Moles and J.P. Vigier: Nuovo Cim. B39 (1977) 193. See also:

    Google Scholar 

  8. M. Mathisson: Acta Phys. Pol. 6 (1937) 163;

    Google Scholar 

  9. H. Hönl and A. Papapetrou: Z. Phys. 112 (1939) 512; 116 (1940) 153;

    Google Scholar 

  10. M.J. Bhabha and H.C. Corben: Proc. Roy. Soc. (London) A178 (1941) 273;

    Article  ADS  Google Scholar 

  11. K. Huang: Am. J. Phys. 20 (1952) 479;

    Article  ADS  MATH  Google Scholar 

  12. H. Hönl: Ergeb. Exacten Naturwiss. 26 (1952) 29;

    Google Scholar 

  13. A. Proca: J. Phys. Radium 15 (1954) 5;

    Article  MathSciNet  Google Scholar 

  14. M. Bunge: Nuovo Cimento 1 (1955) 977;

    Google Scholar 

  15. F. Gursey: Nuovo Cimento 5 (1957) 784;

    Google Scholar 

  16. H.C. Corben: Classical and quantum theories of spinning particles, ( Holden-Day; San Francisco, 1968 );

    Google Scholar 

  17. B. Liebowitz: Nuovo Cimento A63 (1969) 1235;

    Article  ADS  Google Scholar 

  18. A.J. Kilnay et al.: Phys. Rev. 158 (1967) 1484; Dl (1970) 1092; D3 (1971) 2357; D3 (1971) 2977;

    Google Scholar 

  19. H. Jehle: Phys. Rev. D3 (1971) 306;

    Google Scholar 

  20. F. Riewe: Lett. Nuovo Cim. 1 (1971) 807;

    Article  Google Scholar 

  21. F.A. Berezin and M.S. Marinov: J.E.T.P. Lett. 21 (1975) 32;

    ADS  Google Scholar 

  22. R. Casalbuoni: Nuovo Cimento A33 (1976) 389;

    Article  MathSciNet  ADS  Google Scholar 

  23. G.A. Perkins: Found. Phys. 6 (1976) 237;

    Article  ADS  Google Scholar 

  24. A.O. Barut: Z. Naturforsch. A33 (1978) 993;

    ADS  Google Scholar 

  25. J.A. Lock: Am. J. Phys. 47 (1979) 797;

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Pauri: in Lecture Notes in Physics,vol.135 (Springer-Verlag; Berlin, 1980), p.615; W.A. Rodrigues, J. Vaz and E. Recami: Found. Phys. 23 (1993) 459.

    Google Scholar 

  27. E.P. Wigner: Ann. Phys. 40 (1939) 149;

    MathSciNet  Google Scholar 

  28. M.H.L. Pryce: Proc. Royal Soc. (London) A195 (1948) 6;

    MathSciNet  Google Scholar 

  29. T.F. Jordan and M. Mukunda: Phys. Rev. 132 (1963) 1842;

    Google Scholar 

  30. G.N. Fleming: Phys. Rev. B139 (1965) 903;

    Google Scholar 

  31. H.C. Corben: Phys. Rev. 121 (1961) 1833; D30 (1984) 2683; Am. J. Phys. 45 (1977) 658; 61 (1993) 551; Int. J. Theor. Phys. 34 (1995) 19;

    Article  Google Scholar 

  32. F.A. Ikemori: Phys. Lett. B199 (1987) 239; Ph. Gueret: Lectures at the Bari university (Bari; 1989 );

    Google Scholar 

  33. G. Cavalleri: Phys. Rev. D23 (1981) 363; Nuovo Cim. B55 (1980) 392; C6 (1983) 239; Lett. Nuovo Cim. 43 (1985) 285.

    Google Scholar 

  34. E. Schrôdinger: Sitzunger. Preuss. Akad. Wiss. Phys. Math. KI. 24 (1930) 418; 3 (1931) 1.

    Google Scholar 

  35. A.O. Barut and N. Zanghi: Phys. Rev. Lett. 52 (1984) 2009;

    Google Scholar 

  36. A.O. Barut and A.J. Bracken: Phys. Rev. D23 (1981) 2454; D24 (1981) 3333;

    Google Scholar 

  37. A.O. Barut and I.H. Duru: Phys. Rev. Lett. 53 (1984) 2355;

    Google Scholar 

  38. A.O. Barut and M. Pays“ie: Class. Quantum Gray.: 4 (1987) L131; Phys. Lett. B216 (1989) 297;

    Google Scholar 

  39. M. Paysie: Phys. Lett. B205 (1988) 231; B221 (1989) 264;

    Google Scholar 

  40. Class. Quant. Gray. 7 (1990) L187.

    Google Scholar 

  41. M. Paysit, E. Recami, W.A. Rodrigues, G.D. Maccarrone, F. Raciti and G. Salesi: Phys. Lett. B318 (1993) 481;

    MathSciNet  Google Scholar 

  42. W.A. Rodrigues, J. Vaz, E. Recami and G. Salesi: Phys. Lett. B318 (1993) 623;

    MathSciNet  Google Scholar 

  43. J. Vaz and W.A. Rodrigues: Phys. Lett. B319 (1993) 203;

    MathSciNet  Google Scholar 

  44. E. Recami and G. Salesi: Adv. Appl. Cliff. Alg 6 (1996) 27; “Field theory of the electron: spin and zitterbewegung”, in Gravity, Particles and Space-Time,ed. by P. Pronin and G. Sardanashvily (World Scientific; Singapore, 1996), pp.345–368; in Electron Theory and Quantum Electrodynamics: 100 Years Later,ed. by J.P. Dowling (Plenum; New York, 1997), pp.241–251 and pp.253–260;

    Google Scholar 

  45. G. Salesi and E. Recami: Phys. Lett. A190 (1994) 137; 195 (1994) 389; G. Salesi: “Zitterbewegung of the spinning electron in external field”, preprint 95/10 of Catania State University, Physics Dept.

    Google Scholar 

  46. D. Hestenes: Am. J. Phys. 39 (1971) 1028; 39 (1971) 1013; 47 (1979) 399; J. Math. Phys. 14 (1973) 893; 16 (1975) 573; 16 (1975) 556; 8 (1979) 798; Found. Phys. 15 (1985) 63; 20 (1990) 1213, 23 (1993) 365; D.Hestenes: Space-time algebra (Gordon Breach; New York, 1966 ); New foundations for classical mechanics ( Kluwer; Dordrecht, 1986 );

    Google Scholar 

  47. D. Hestenes and G. Sobczyk: Clifford algebra to geometric calculus ( Reidel; Dordrecht, 1984 );

    Google Scholar 

  48. D. Hestenes and A. Weingartshofer (eds.): The electron ( Kluwer; Dordrecht, 1991 ).

    Google Scholar 

  49. See, e.g., M.A. Faria-Rosa, E. Recami and W.A. Rodrigues: Phys. Lett. B173 (1986) 233;

    Google Scholar 

  50. A. Maia, E. Recami, W.A. Rodrigues and M.A.F. Rosa: J. Math. Phys. 31 (1990) 502;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. W.A. Rodrigues, E. Recami, A. Maia and M.A.F. Rosa: Phys. Lett. B220 (1989) 195.

    MathSciNet  Google Scholar 

  52. J. Weyssenhof and A. Raabe: Acta Phys. Pol. 9 (1947) 7.

    Google Scholar 

  53. G. Salesi: Mod. Phys. Lett. All (1996) 1815.

    Google Scholar 

  54. See e.g. L.D. Landau and E.M. Lifsits: Teoria quantistica relativistica, p. 148 ( Editori Riuniti—Edizioni MIR; Roma, 1978 ).

    Google Scholar 

  55. E. Recami,G. Ziino: Nuovo Cim. A33 (1976) 205.

    ADS  Google Scholar 

  56. For the physical interpretation of the negative frequency waves, without any recourse to a “Dirac sea”, see E.Recami: Found. Phys. 8 (1978) 329;

    Google Scholar 

  57. E. Recami and W.A. Rodrigues: Found. Phys. 12 (1982) 709; 13 (1983) 533;

    Google Scholar 

  58. M. Pavsic and E. Recami: Lett. Nuovo Cim. 34 (1982) 357;

    Google Scholar 

  59. cf. also R. Mignani and E. Recami: Lett. Nuovo Cim. 18 (1977) 5;

    Google Scholar 

  60. A. Garuccio et al.: Lett. Nuovo Cim. 27 (1980) 60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Salesi, G., Recami, E. (1998). Hydrodynamical Reformulation and Quantum Limit of the Barut-Zanghi Theory. In: Hunter, G., Jeffers, S., Vigier, JP. (eds) Causality and Locality in Modern Physics. Fundamental Theories of Physics, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0990-3_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5092-2

  • Online ISBN: 978-94-017-0990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics