Skip to main content

Implications of Mach’s Principle: Dark Matter and Observable Gravitons

  • Conference paper

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 97))

Abstract

According to the geometrical interpretation of the Mach-Einstein doctrine (MED), the gravitational field must be given by the 16 components of the reference tetrads such that the gravitational equations define an Einstein-Cartan teleparallelism breaking the local Lorentz invariance of physics. Therefore, the MED can be by gravitational equations of Einstein-Mayer type which are coordinate-covariant but not Lorentz invariant. In this theory, the gravitational field defines a global Machian reference system determined by the cosmic matter. The theory of general relativity (GRT) is just that “degenerate case” of the Einstein-Mayer class of theories which maintains the local Lorentz invariance. From this point of view, the main task of cosmology is to discover Machian reference systems as solutions of the Einstein-Mayer equations and thus to prove them as determined by the matter of the universe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-H. v. Borzeszkowski and H.-J. Treder, Found. Phys. 26, 929 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  2. H.-H. v. Borzeszkowski and H.-J. Treder, Found. Phys. 27, 595 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  3. H.-H. v. Borzeszkowski and H.-J. Treder, “Dark Matter versus Mach’s Principle”, Found. Phys. (in print).

    Google Scholar 

  4. A. Einstein, “Riemann-Geometrie und Aufrechterhaltung des Begriffs des Fernparallelismus”, Berliner Ber. 1928, p. 219.

    Google Scholar 

  5. A. Einstein, “Einheitliche Feldtheorie und Hamiltonsches Prinzip”, Berliner Ber. 1929, p. 124.

    Google Scholar 

  6. A. Einstein and W. Mayer, “Systematische Untersuchung über kompatible Feldgleichungen, welche von einem Riemannschen Raum mit Femparallelismus gesetzt werden können”, Berliner Ber. 1931, p. 3.

    Google Scholar 

  7. R. Weitzenböck, “Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus”, Berliner Ber. 1928, p. 466.

    Google Scholar 

  8. C. Moller, Math.-Fys. Skr. Dans. Vidensk. Selsk. 1, No. 10 (1961).

    Google Scholar 

  9. C. Moller, “Survey of Investigations on the Energy-Momentum Complex in General Relativity”, in Entstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationstheorie, H.-J. Treder, ed. ( Akademie-Verlag, Berlin 1966 ).

    Google Scholar 

  10. E. Noether, “Invarianten beliebiger Differentialausdrücke”, Göttinger Ber. 1918, p. 37.

    Google Scholar 

  11. F. Klein, “Über die Differentialgesetze von Impuls und Energie in der Einsteinschen Gravitationstheorie”, Göttinger Ber. 1918, p. 235.

    Google Scholar 

  12. A. Einstein, “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravittion und Elektrizität”, Berliner Ber. 1928, p. 224.

    Google Scholar 

  13. C. Pellegrini and J. Plebanski, Mat.-Fys Skr. Det Kgl. Dans. Vidensk. Selsk. 2, No. 4 (1963).

    Google Scholar 

  14. R W. Hehl, Found. Phys. 15, 451 (1985); F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne’eman, “Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance”, Physics Reports 258 (1995) pp. 1–171.; cf. also the literature cited therein.

    Google Scholar 

  15. F. W. Hehl and F. Gronwald, “On Gauge Aspects of Gravity”, in Quantum Gravity, P. G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. ( World Scientific, Singapore 1996 ).

    Google Scholar 

  16. J. Binney and S. Tremaine, Galactic Dynamics ( Princeton U. P., 1987 ).

    MATH  Google Scholar 

  17. R. Bernabei, L. Catena, and A. Incichitti (eds.),The Dark Side of the Universe. Experimental Efforts and Theoretical Framework ( World Scientific, Singapore, 1996 ).

    Google Scholar 

  18. E. Schrödinger, Space-Time Structure (Cambridge, 1950 ).

    Google Scholar 

  19. H. Bauer, Phys. Z. 19, 163 (1918).

    MATH  Google Scholar 

  20. A. Ashtekar and J. Stachel (eds.), Conceptual Problems of Quantum Gravity ( Birkhäuser, Boston 1991 ).

    MATH  Google Scholar 

  21. C. J. Isham, “Conceptual and Geometrical Problems in Quantum Gravity”, Lectures presented at the 1992 Schladming Winter School, Imperial/TP/ 90–91/ 14. 12, 633.

    Google Scholar 

  22. H.-H. v. Borzeszkowski, “On Self-Interaction and (Non-)Pertubative Quantum GRT”, in The Present Status of the Quantum Theory of Light, S. Jeffers, S. Roy, and J.-P. Vigier, eds. ( Kluwer, Dordrecht 1997 ).

    Google Scholar 

  23. H.-H. v. Borzeszkowski and H.-J. Treder, The Meaning of Quantum Gravity ( Reidel, Dordrecht 1988 ).

    Google Scholar 

  24. H.-H. v. Borzeszkowski and H.-J. Treder, Gen. Rel. Gray. 25, 291 (1993).

    Article  ADS  Google Scholar 

  25. H.-H. v. Borzeszkowski, V. de Sabbata, C. Sivaram, and H.-J. Treder, Found. Phys. Lett. 9, 157 (1996).

    Article  MathSciNet  Google Scholar 

  26. W. Heisenberg, Einführung in die einheitliche Feldtheorie der Elementarteilchen (S. Hirzel, Stuttgart 1967 ).

    Google Scholar 

  27. H.-J. Treder, Found. Phys. 1, 37 (1970); “Gravitonen als Goldstone-Teilchen”, in H.-J. Treder Philosophische Probleme des physikalischen Raumes ( Akademie-Verlag, Berlin 1974 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

von Borzeszkowski, HH., Treder, HJ. (1998). Implications of Mach’s Principle: Dark Matter and Observable Gravitons. In: Hunter, G., Jeffers, S., Vigier, JP. (eds) Causality and Locality in Modern Physics. Fundamental Theories of Physics, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0990-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5092-2

  • Online ISBN: 978-94-017-0990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics