Skip to main content

Biocatalytic, Biomimetic and Suprabiotic Oxidation of Alkanes

  • Chapter
Catalytic Activation and Functionalisation of Light Alkanes

Part of the book series: NATO ASI Series ((ASHT,volume 44))

  • 277 Accesses

Abstract

The controlled partial oxidation of hydrocarbons (alkanes, alkenes and aromatics) is the single most important technology for converting petrochemical feedstocks to industrial organic chemicals [1–4]. For economic reasons, these processes predominantly involve the use of molecular oxygen (dioxygen) as the primary oxidant. The success of these processes depends largely on the use of transition metal catalysts to promote both the rate of reaction and the selectivity to partial oxidation products. Both gas phase and liquid phase oxidations, employing heterogeneous and homogeneous catalysts, respectively, are practical industrially (Table 1). A cursory examination of Table 1 reveals that alkane oxidations, generally speaking, tend to give lower selectivities than alkenes or alkylaromatics. However, there is a marked trend towards substitution, where possible, of olefin and aromatic feedstocks by cheaper alkanes. Particularly desirable targets include the use of propane as the feedstock for acrylonitrile and acrylic acid, ethane for acetic acid and n-pentane for phthalic anhydride. The direct conversion of methane to methanol, rather than via synthesis gas, is also a highly attractive goal. Hence, there is considerable industrial interest in developing more selective methods for the oxidation of (lower) alkanes with dioxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheldon, R.A. and Kochi, J.K. (1981) Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York.

    Google Scholar 

  2. Sheldon, R.A. and van Santen, R.A. (eds.) (1995) Catalytic Oxidation, Principles and Applications, World Scientific, Singapore.

    Google Scholar 

  3. Bielanski, A. and Haber, J. (1991) Oxygen in Catalysis, Marcel Dekker, New York.

    Google Scholar 

  4. Franz, G. and Sheldon, R.A. (1991) Oxidation, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A18, VCH, Weinheim, pp. 261 - 311.

    Google Scholar 

  5. Anthony, C. (1982) The Biochemistry of Methylotrophs, Academic Press, New York.

    Google Scholar 

  6. Mars, P. and van Krevelen, D.W. (1954) Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci. Spec. Suppl., 3, 41.

    Article  CAS  Google Scholar 

  7. Coulston, G.W., Bare, S.R., Kung, H., Birkeland, K., Bethke, G.K., Harlow, R., Herron, N., and Lee, P.L. (1997) The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates, Science 275, 191 - 193.

    Article  CAS  Google Scholar 

  8. Hayaishi, O., Katagari, M., and Rothberg, S. (1955) Mechanism of the pyrocatechase reaction, J. Am. Chem. Soc., 77, 5450.

    Article  CAS  Google Scholar 

  9. Mason, H.S., Fowlks, W.L., and Peterson, E. (1955) Oxygen transfer and electron transport by the phenolase complex, J. Am. Chem. Soc., 77, 2914.

    Article  CAS  Google Scholar 

  10. Hayaishi, 0. (1962) Oxygenases, Academic Press, New York.

    Google Scholar 

  11. Nguyen, H.H.T., Shiemka, A.K., Jacobs, S.J., Hales, B.J., Lidstrom, M.E., and Chan, S.I. (1994) The nature of the copper ions in the membranes containing the particular methane monooxygenase from Methylococcus capsulatus (Bath), J. Biol. Chem. 269, 14995.

    CAS  Google Scholar 

  12. Sono, M., Roach, M.P., Coulter, E.D., and Dawson, J.H. (1996) Herne-containing oxygenases, Chem. Rev. 96, 2841.

    Article  CAS  Google Scholar 

  13. Mansuy, D. and Battioni, P. (1993) Dioxygen activation at heure centers in enzymes and synthetic analogs, in J. Reedijk (ed.), Bioinorganic Catalysis, Marcel Dekker, New York, p. 395.

    Google Scholar 

  14. Ortiz de Montellano, P.R. (ed.) (1995) Cytochrome P450: Structure, Mechanism Biochemistry, 2nd ed., Plenum, New York.

    Google Scholar 

  15. Wallar, B.J. and Lipscomb, J.D. (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev. 96, 2625.

    Article  CAS  Google Scholar 

  16. Que, L. (1993) Oxygen activation at non-heme iron centers, in J. Reedijk (ed.) Bioinorganic Catalysis, Marcel Dekker, New York, p. 347.

    Google Scholar 

  17. Feig, L. and Lippard, S.J. (1994) Reaction of non-heure iron(II) centers with dioxygen in biology and chemistry, Chem. Rev. 94, 759.

    Article  CAS  Google Scholar 

  18. Rosenzweig, A.C. and Lippard, S.J. (1994) Determining the structure of a hydroxylase enzyme that catalyzes the conversion of methane to methanol in methanotrophic bacteria, Acc. Chem. Res. 27, 229.

    Article  CAS  Google Scholar 

  19. George, A.R., Wilkins, P.C., and Dalton, H. (1996) A computational investigation of the possible substrate binding sites in the hydroxylase of soluble methane monooxygenase, J. Mol. Catal. B: Enzymatic 2, 103.

    Article  CAS  Google Scholar 

  20. Shu, L., Nesheim, J.C., Kaufmann, K., Munck, E., Lipscomb, J.D., and Que, L. (1997) An Fe21v02 diamond core structure for the key intermediate Q of methane monooxygenase, Science 275, 515.

    Article  CAS  Google Scholar 

  21. Nivorzhkin, A.L. and Girerd, J.J. (1996) Oxygen activation by mononuclear non-heme iron proteins, Angew. Chem. Ind. Ed. Eng. 35, 609.

    Article  Google Scholar 

  22. Que, L. and Ho, R.Y.N. (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites, Chem. Rev. 96, 2607.

    Article  CAS  Google Scholar 

  23. Rosenzweig, A.C., Frederick, C.A., Lippard, S.J., and Nordlund, P. (1993) Crystal structure of a bacterial non-heme hydroxylase that catalyzes the biological oxidation of methane, Nature 366, 537.

    Article  CAS  Google Scholar 

  24. Liu, K.E., Valentine, A.M., Qiu, D., Edmondson, D.E., Appelman, Spiro, T.G., and Lippard, S.J. (1995) Characterization of a diiron(III) peroxo intermediate in the reaction cycle of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 117, 4997.

    CAS  Google Scholar 

  25. Halfen, J.A., Mahapatra, S., Wilkinson, E.C., Kaderli, S., Young, V.G., Que, L., Zuberbühler, A.D., and Tolman, W.B. (1996) Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex, Science 271, 1397.

    Article  CAS  Google Scholar 

  26. Shteinman, A.A. (1995), The mechanism of methane and dioxygen activation in the catalytic cycle of methane monooxygenase, FEBS Lett., 362, 5.

    Article  CAS  Google Scholar 

  27. Funabiki, T., (ed.) (1996) `Oxygenases and Model Systems', Kluwer, Dordrecht.

    Google Scholar 

  28. Sheldon, R.A. (1993) A history of oxygen activation: 1773-1993, in D.H.R. Barton, A.E. Martell, and D.T. Sawyer (eds.), The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Plenum, New York, p. 1.

    Google Scholar 

  29. Udenfriend, S., Clark, C.T., Axelrod, J., and Brodie, B.D. (1954) Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation, J Biol. Chem., 208, 731.

    CAS  Google Scholar 

  30. Mimoun, H. (1987) Metal complexes in oxidation, in G. Wilkinson, R.D. Gillard and J.A. McCleverty (eds.), `Comprehensive Coordination Chemistry', Vol. 6, Pergamon, New York, p. 317.

    Google Scholar 

  31. Tabushi, I. (1988) Reductive dioxygen activation by use of artificial P450 systems, Coord. Chem. Rev.,86, 1.

    Google Scholar 

  32. Sheldon, R.A. (ed.) (1994) `Metalloporphyrins in Catalytic Oxidations', Marcel Dekker, New York.

    Google Scholar 

  33. Montanari, F.and Casella, L. (eds.) (1994) `Metalloporphyrin Catalyzed Oxidations', Kluwer, Dordrecht.

    Google Scholar 

  34. For key references see: Collman, J.P., Halpert, T.R., and Suslick, K.S. (1980) 02 binding to heure proteins and their synthetic analogs, in T.G. Spiro (ed.), Metal Ion Activation of Dioxygen, Wiley, New York, p. 1.

    Google Scholar 

  35. Hrycay, E.G., Gustafsson, J.A., Ingelman-Sundberg, M., and Ernster, L. (1975) Sodium periodate, sodium chlorite, organic hydroperoxides and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun. 66, 209.

    Article  CAS  Google Scholar 

  36. Groves, J.T., Nemo, T.E., and Myers, R.S. (1979) Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodoxylbenzene, J. Am. Chem. Soc., 101, 1032.

    Article  CAS  Google Scholar 

  37. See for example: Murahashi, S.I., Oda, Y., and Naota, T. (1992) Iron and ruthenium-catalyzed oxidations of alkanes with molecular oxygen in the presence of aldehydes and acids, J. Am. Chem. Soc. 114, 7913.

    Google Scholar 

  38. Ito, M., Fujisawa, K., Kitajima, N., and Moro-oka, Y. (1996) Model studies on nonheme monooxygenases - chemical models for nonheme iron and copper monooxygenases, in ref 27, p. 345.

    Google Scholar 

  39. Kitajima, N., Fukui, H., and Moro-oka, Y. (1988) A model for methane monooxygenase: dioxygen oxidation of alkanes by use of a µ-oxo binuclear iron complex, J. Chem. Soc., Chem. Commun., 485.

    Google Scholar 

  40. Kitajima, N., Ito, M., Fukui, H., and Moro-oka, Y. (1991) Hydroxylation of alkanes and arenes using molecular oxygen, J. Chem. Soc., Chem. Commun., 102.

    Google Scholar 

  41. Que, L.and Dong. Y. (1996) Modeling the oxygen activation chemistry of methane monooxygenase and ribonucleotide reductase, Acc. Chem. Res., 29, 190.

    Article  Google Scholar 

  42. Kim, K.and Lippard, S.J. (1996) Structure and Mössbauer-spectrum of a (11-1,2-peroxo)bis(µ-carboxylato)diiron(III) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle, J. Am. Chem. Soc., 118, 4914.

    Article  Google Scholar 

  43. Menage, S., Brennan, B.A., Juarez-Garcia, C., Münck, E., and Que, L. (1990) Models for iron-oxo proteins: dioxygen binding to a diferrous complex, J. Am. Chem. Soc., 112, 6423.

    Article  CAS  Google Scholar 

  44. Barton, D.H.R.and Doller, D. (1992) The selective functionalization of saturated hydrocarbons: Gif chemistry, Acc. Chem. Res., 25, 504.

    Article  Google Scholar 

  45. Barton, D.H.R.and Doller, D. (1991) The selective functionalization of saturated hydrocarbons: Gif and all that, Pure Appl. Chem., 63, 1567.

    Article  Google Scholar 

  46. Barton, D.H.R., Gastiger, M.J., and Motherwell, W.B. (1983) Activation of the C-H bond in hydrocarbons: the isolation and catalytic activity of a trinuclear organoiron carboxylate cluster, J. Chem. Soc., Chem. Commun., 731

    Google Scholar 

  47. Barton, D.H.R.and Taylor, D.K. (1996) Models for non-heme oxidation enzymes, Pure Appl. Chem., 68, 497.

    Article  Google Scholar 

  48. Barton, D.H.R. (1997) Oxygen and I, J. Mol. Catal. A: Chemical, 117, 3.

    Article  CAS  Google Scholar 

  49. Perkins, M.J. (1996) A radical reappraisal of Gif reactions, Chem. Soc. Rev., 229.

    Google Scholar 

  50. Barton, D.H.R. (1996) The mechanism of Gif reactions, Chem. Soc. Rev., 237.

    Google Scholar 

  51. Arends, I.W.C.E., Ingold, K.U., and Wayner, D.D.M. (1995) A mechanistic probe for oxygen activation by metal complexes and hydroperoxides and its application to alkane functionalization by [Fe1t1Cl2tris(2-pyridinylmethyl)amine]+BF0., J. Am. Chem. Soc., 117, 4710.

    Article  CAS  Google Scholar 

  52. MacFaul, P.A., Arends, I.W.C.E., Ingold, K.U., and Wayner, D.D.M. (1997) Oxygen activation by metal complexes and alkyl hydroperoxides. Applications of mechanistic probes to explore the role of alkoxyl radicals in alkane functionalization, J. Chem. Soc., Perkin Trans., 2, 135.

    Article  Google Scholar 

  53. Barton, D.H.R., Hu, B., Taylor, D.K., and Rojas Wahl, R.U. (1996) The selective functionalization of saturated hydrocarbons. Part 32. Distinction between the Fe'l/Fely and FeII/Fev manifolds in Gif chemistry. The importance of carboxylic acids for alkane activation. Evidence for a dimeric iron species involved in Gif-type chemistry, J. Chem. Soc., Perkin Trans., 2, 1031.

    Article  Google Scholar 

  54. Kodera, M., Kano, K., and Funabiki, T. (1997) Nonheme monooxygenases, in T. Funabiki (ed.), Oxygenases and Model Systems, Kluwer, Dordrecht, p. 283.

    Chapter  Google Scholar 

  55. Tabushi, I., Nakajima, T., and Seto, K. (1980) The oxidation of an iron salen complex modelling w-hydroxylase, Tetrahedron Lett., 21, 2565.

    Article  CAS  Google Scholar 

  56. Barton, D.H.R., Li, T., and MacKinnon, J. (1997) Synergistic oxidation of cyclohexane and hydrogen sulfide under Gif conditions, J. Chem. Soc., Chem. Commun., accepted for publication.

    Google Scholar 

  57. Gardner, K.A.and Mayer, J.A. (1995) Understanding C-H bond oxidations: H. and H- transfer in the oxidation of toluene by permanganate, Science, 269, 1849.

    Article  Google Scholar 

  58. Arndtsen, B.A., Bergman, R.G., Mobley, T.A., and Peterson, T.H. (1995) Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution, Acc. Chem. Res., 28, 154.

    Article  CAS  Google Scholar 

  59. Crabtree, R.H. (1995) Aspects of methane chemistry, Chem. Rev., 95, 987.

    Article  CAS  Google Scholar 

  60. Shilov, A.E. (1984) Activation of Saturated Hydrocarbons by Transition Metal Complexes, Reidel, Dordrecht.

    Google Scholar 

  61. Vargaftik, M.N., Stolarov, I.P., and Moiseev, I.I. (1990) Highly selective partial oxidation of methane to methyl trifluoroacetate, J. Chem. Soc. Chem. Commun., 1049.

    Google Scholar 

  62. Periana, R.A., Taube, D.J., Evitt, E.R., Löffler, D.G., Wentrcek, P.R., Voss, G., and Masuda, T. (1993) A mercury-catalyzed, high-yield system for the oxidation of methane to methanol, Science, 259, 340.

    Article  CAS  Google Scholar 

  63. Sen, A. (1996) New approaches in C-H activation of alkanes, in Applied Homogeneous Catalysis with Organometallic Compounds, B. Cornils and W.A. Herrmann (eds.), Vol. 2, VCH, Weinheim, p. 1081.

    Google Scholar 

  64. Lin, M.and Sen, A. (1992) A highly catalytic system for the direct oxidation of lower alkanes by dioxygen in aqueous medium. A formal heterogeneous analog of alkane monooxygenases, J. Am. Chem. Soc., 114, 7307.

    Article  Google Scholar 

  65. Lin, M.and Sen, A. (1995) Direct catalytic conversion of methane to acetic acid in an aqueous medium, Nature, 368, 613.

    Google Scholar 

  66. Ellis, P.E.and Lyons, J.E. (1990) Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins - the search for a suprabiotic system, Coord. Chem. Rev., 105, 181 and references cited therein.

    Google Scholar 

  67. Lyons, J.E.and Ellis, P.E. (1994) Reactions of alkanes with dioxygen: toward suprabiotic systems, in ref. 32, p. 297 and references cited therein.

    Google Scholar 

  68. Grinstaff, M.W., Hill, M.G., Labinger, J.A., and Gray, H.B. (1994) Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins, Science, 264, 1311.

    Article  CAS  Google Scholar 

  69. Labinger, J.A. (1994) A simplified model for catalyzed isobutane oxidation: implications for the mechanism of catalysis by halogenated porphyrin complexes, Catal. Lett., 26, 95.

    Article  CAS  Google Scholar 

  70. Böttcher, A., Birnbaum, E.R., Day, M.W., Gray, H.B., Grinstaff, M.W., and Labinger, J.A. (1997) How do electronegative substituents make metal complexes better catalysts for the oxidation of hydrocarbons by dioxygen, J. Mol. Catal. A: Chemical, 117, 229.

    Article  Google Scholar 

  71. Böttcher, A., Grinstaff, M.W., Labinger, J.A., and Gray, H.B. (1996) Aerobic oxidation of hydrocarbons catalyzed by electronegative iron salen complexes, J. Mol. Catal. A: Chemical, 113, 191.

    Article  Google Scholar 

  72. Goldstein, A.S.and Drago, R.S. (1991) Hydroxylation of methane by a sterically hindered ruthenium complex, J. Chem. Soc., Chem. Commun., p. 21.

    Google Scholar 

  73. Rabion, A., Buchanan, R.M., Seris, J.L., and Fish, R.H. (1997) Biomimetic oxidation studies. 10. Cyclohexane oxidation reactions with active site methane monooxygenase enzyme models and tert-butyl hydroperoxide in aqueous micelles: mechanistic insights and the role of t-butoxy radicals in the C-H functionalization reaction, J. Mol. Catal. A: Chemical, 116, 43.

    Article  CAS  Google Scholar 

  74. Ishii, Y. (1997) A novel catalysis of N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n = 2 or 3) in the oxidation of organic substrates with molecular oxygen, J. Mol. Catal. A: Chemical, 117, 123 and references cited therein.

    Google Scholar 

  75. Ishii, Y., Iwahama, T., Sakaguchi, S., Nakayama, K., and Nishiyama, Y. (1996) Alkane oxidation with molecular oxygen using a new efficient catalytic system: N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n = 2 or 3), J. Org. Chem., 61, 4520.

    Article  CAS  Google Scholar 

  76. Arends, I.W.C.E., Sheldon, R.A., Wallau, M., and Schuchardt, U. (1997) Oxidative transformations of organic compounds mediated by redox molecular sieves, Angew. Chem. Int. Ed. Engl.,109, in press.

    Google Scholar 

  77. Sheldon, R.A., Arends, I.W.C.E., and Lempers, H.E.B. (1997) Liquid phase oxidation at metal ions in constrained environments, Catalysis Today,in press.

    Google Scholar 

  78. Williams, R.J.P. (1986) Metallo-enzyme catalysis: the entactic state, J. Mol. Catal., Review Issue, p. 1.

    Google Scholar 

  79. Dewar, M.J.S. (1986) New ideas about enzyme reactions, Enzyme, 36, 8.

    CAS  Google Scholar 

  80. Parton, R., De Vos, D., and Jacobs, P.A. (1992) Enzyme mimicking with zeolites, in Zeolites and Microporous Solids. Synthesis, Structure and Reactivity, E.G. Derouane et al. (eds.), Kluwer, Dordrecht, p. 555.

    Google Scholar 

  81. Vanoppen, D.L., De Vos, D.E., Genet, M.J., Rouxhet, P.G., and Jacobs, P.A. (1995) Cobalt-containing molecular sieves as catalysts for the low conversion autoxidation of pure cyclohexane, Angew. Chem. Int. Ed. Engl., 34, 560.

    Article  CAS  Google Scholar 

  82. Chen, J.D.and Sheldon, R.A. (1995) Selective oxidation of hydrocarbons with 02 over chromium aluminophosphate-5 molecular sieve, J Catal., 153, 1.

    Article  Google Scholar 

  83. Balkus, K.J.and Gabrielov, A.G. (1995) Zeolite encapsulated metal complexes, J. Incl. Phen. Mol. Recogn. Chem., 21, 159.

    Google Scholar 

  84. De Vos, D.E., Thibault-Starzyk, F., Knops-Gerrits, P.P., Parton, R.F., and Jacobs, P.A. (1994) A critical overview of the catalytic potential of zeolite supported metal complexes, Macromol. Symp., 80, 157.

    Article  CAS  Google Scholar 

  85. Herron, N., Stucky, G.D., and Tolman, C.A. (1986) Shape selectivity in hydrocarbon oxidation using zeolite encapsulated iron phthalocyanine catalysts, J. Chem. Soc., Chem. Commun., 1521.

    Google Scholar 

  86. Parton, R.F., Uytterhoeven, L., and Jacobs, P.A. (1991) Ironphthalocyanines encaged in zeolite Y and VPI-5 molecular sieve as catalysts for the oxyfunctionalization of n-alkanes, Stud. Surf Sci. Catal., 59, 395.

    Article  CAS  Google Scholar 

  87. Parton, R.F., Vankelecom, I.F.J., Casselman, M.J.A., Bezoukhanova, C.P., Uytterhoeven, J.B., and Jacobs, P.A. (1994) An efficient mimic of cytochrome P-450 from a zeolite-encaged iron complex in a polymer membrane, Nature, 370, 541.

    Article  CAS  Google Scholar 

  88. Parton, R.F., Vankelecom, I.F.J., Tas, D., Janssen, K.B.M., Knops-Gerrits, P.P., and Jacobs, P.A. (1996) Membrane occluded catalysts: a higher order mimic with improved performance, J. Mol. Catal. A: Chemical, 113, 283.

    Article  CAS  Google Scholar 

  89. Balkus, K.J., Eissa, M., and Lavado, R. (1995) Cyclohexane oxidation catalyzed by zeolite encapsulated ruthenium perfluorophthalocyanines, Stud. Surf Sci. Catal., 94, 713.

    Article  CAS  Google Scholar 

  90. Knops-Gerrits, P.P., L'abbé, M., Leung, W.H., Van Bavel, A.M., Langouche, G., Bruynseraede, I., and Jacobs, P.A. (1996) Alkane partial oxidation with iron N,N'-bis(2-pyridinecarboxamide) complexes encaged in zeolite Y, Stud. Surf. Sci. Catal., 101, 811.

    Article  CAS  Google Scholar 

  91. Thomas, J.M. (1997) Designing new inorganic catalysts, J. Mol. Catal. A: Chemical, 115, 371.

    Article  CAS  Google Scholar 

  92. 92. Lin, D.H., Coudurier, G., and Vedrine, J.C. (1989) Fe-ZSM-5: Physicochemical and catalytic properties, in Zeolites: Facts, Figures, Future,P.A. Jacobs and R.A. van Santen (eds.), Elsevier, Amsterdam, p. 1431.

    Google Scholar 

  93. Ratnasamy, P. and Kumar, R. (1991) Ferrisilicate analogs of zeolites, Catalysis Today, 9, 329.

    Article  Google Scholar 

  94. Ovanesyan, N.S., Sobolev, V.I., Dubkov, K.A., Panov, G.I., and Shteinman, A.A. (1996) The nature of the active oxidant in biomimetic methane oxidation on Fe-ZSM-5 zeolite, Izv. Akad. Nauk, Ser. Khim.,6, 1583; CA,125, 247051u.

    Google Scholar 

  95. Anderson, J.R. and Tsai, P. (1987) Methanol from oxidation of methane by nitrous oxide over FeZSM-5 catalysts, J. Chem. Soc., Chem. Commun., p. 1435.

    Google Scholar 

  96. Durante, V.A., Lyons, J.E., Walker, D.W., and Marcus, B.K. (1994) New manganese catalyst for light alkane oxidation, US Pat. 5345011 to Sun Co.; CA, 122, 186943a.

    Google Scholar 

  97. See also: Lyons, J.E., Ellis, P., and Durante, V. (1991) Active iron oxo centres for the selective catalytic oxidation of alkanes, Stud. Surf. Sci. Catal., 67, 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sheldon, R.A. (1998). Biocatalytic, Biomimetic and Suprabiotic Oxidation of Alkanes. In: Derouane, E.G., Haber, J., Lemos, F., Ribeiro, F.R., Guisnet, M. (eds) Catalytic Activation and Functionalisation of Light Alkanes. NATO ASI Series, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0982-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0982-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4999-5

  • Online ISBN: 978-94-017-0982-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics