Skip to main content

Escape Mechanisms in Tumour Immunity

  • Chapter
  • 208 Accesses

Part of the book series: Immunology and Medicine Series ((IMME,volume 30))

Abstract

There is now much evidence that tumours can be immunogenic, ie. that they frequently do express antigens in a form recognizable by the host immune system. This has been shown not only in experimental animals but also for spontaneously arising human tumours. Tumour progression may therefore require the evolution of variants which can “escape” the immune response. Mechanisms for the escape of tumours from immune responses (endogenous or therapeutic) include:

  • downregulation of immune responses by the tumour and / or associated T cells and their products

  • altered expression of MHC and/or tumour antigens by tumour cells

  • altered expression of adhesion or accessory molecules by tumour and / or dendritic cells

  • usurpation of the immune response to the advantage of the tumour (“immunostimulation”)

The purpose of this chapter is to consider the current status of knowledge concerning these different tumour escape strategies, focussing on clinical studies wherever possible. Animal models will only be considered to illustrate points of potential importance to studies in humans where data in the latter are scarce or absent. This area is very fast-moving and for this reason, predominantly literature from the last 5 years will be reviewed. Some of the overall concepts have been recently discussed in a “Symposiumin-Writing” published in October 1999 (see ref.[1]). Weight will be given to those studies that not only contribute to defining the nature of the event associated with tumour escape, but point to possible ways for preventing this occurence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pawelec G. Tumour escape from the immune response: the last hurdle for successful immunotherapy of cancer? Cancer Immunol Immunother l999;48(7):343–5.

    Google Scholar 

  2. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: Association with disease progression. Gastroenterology 1996; 110 (2): 375–82.

    Article  PubMed  CAS  Google Scholar 

  3. Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE. Elevated plasma levels of transforming growth factor (TGF)-beta 1 and TGF-beta 2 in patients with disseminated malignant melanoma. Br J Cancer 1998; 77 (9): 1492–4.

    Article  PubMed  CAS  Google Scholar 

  4. Doran T, Stuhlmiller H, Kim JA, Martin EW, Triozzi PL. Oncogene and cytokine expression of human colorectal tumors responding to immunotherapy. J Immunother 1997; 20 (5): 372–6.

    Article  PubMed  CAS  Google Scholar 

  5. Vanky F, Nagy N, Hising C, Sjovall K, Larson B, Klein E. Human ex vivo carcinoma cells produce transforming growth factor beta and thereby can inhibit lymphocyte functions in vitro. Cancer Immunol Immunother 1997; 43 (6): 317–23.

    Article  PubMed  CAS  Google Scholar 

  6. Mantovani G, Maccio A, Esu S, et al. Lack of correlation between defective cell-mediated immunity and levels of secreted or circulating cytokines in a study of 90 cancer patients–Clinical study. hit J Oncol 1994; 5 (6): 1211–7.

    PubMed  CAS  Google Scholar 

  7. Dowlati A, Levitan N, Remick SC. Evaluation of interleukin-6 in bronchoalveolar lavage fluid and serum of patients with lung cancer. J Lab Clin Med 1999; 134 (4): 405–9.

    Article  PubMed  CAS  Google Scholar 

  8. Mouawad R, Khayat D, Merle S, Antoine EC, GilDelgado M, Soubrane C. Is there any relationship between interleukin-6/ interleukin-6 receptor modulation and endogenous interleukin-6 release in metastatic malignant melanoma patients treated by biochemotherapy? Melanoma Res 1999; 9 (2): 181–8.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang GJ, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 1999; 19 (2B): 1427–32.

    PubMed  CAS  Google Scholar 

  10. Fortis C, Foppoli M, Gianotti L, et al. Increased interleukin-10 serum levels in patients with solid tumours. Cancer Lett 1996; 104 (1): 1–5.

    Article  PubMed  CAS  Google Scholar 

  11. Bellone G, Turletti A, Artusio E, et al. Tumor-associated transforming growth factor-beta and interleukin10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Amer J Pathol 1999; 155 (2): 537–47.

    Article  CAS  Google Scholar 

  12. Philip T, Negrier S, Lasset C, et al. Patients with Metastatic Renal Carcinoma Candidate for Immunotherapy with Cytokines–Analysis of a Single Institution Study on 181 Patients. Br J Cancer 1993; 68 (5): 1036–42.

    Article  PubMed  CAS  Google Scholar 

  13. Saris AH, Kliche KO, Pethambaram P, et al. Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann Oncol 1999; 10 (4): 43340.

    Google Scholar 

  14. Coites JE, Talpaz M, Cabanillas F, Seymour JF, Kurzrock R. Serum levels of interleukin-10 in patients with diffuse large cell lymphoma: Lack of correlation with prognosis. Blood 1995; 85 (9): 2516–20.

    Google Scholar 

  15. Sjoberg J, Aguilarsantelises M, Sjogren AM, et al. Interleukin-10 mRNA expression in B-cell chronic lymphocytic leukaemia inversely correlates with progression of disease. Br J Haematol 1996;92(2):393400.

    Google Scholar 

  16. Pisa P, Halapi E, Pisa EK, et al. Selective Expression of Interleukin-10, Interferon-gamma, and Granulocyte Macrophage Colony-Stimulating Factor in Ovarian Cancer Biopsies. Proc Natl Acad Sci USA 1992; 89: 7708–12.

    Article  PubMed  CAS  Google Scholar 

  17. Berghella AM, Pellegrini P, Delbeato T, Adorno D, Casciani CU. IL-10 and slL-2R serum levels as possible peripheral blood prognostic markers in the passage from adenoma to colorectal cancer. Cancer Biother Radiophann 1997; 12 (4): 265–72.

    CAS  Google Scholar 

  18. Kim J, Modlin RL, Moy RL, et al. IL-10 production in cutaneous basal and squamous cell carcinomas–A mechanism for evading the local T cell immune response. J Immunol 1995; 155 (4): 2240–7.

    PubMed  CAS  Google Scholar 

  19. Pawelec G, Schlotz E, Rehbein A. IFN-alpha regulates IL-10 production by CML cells in vitro. Cancer hnmunol tmmunother 1999; 48 (8): 430–4.

    Article  CAS  Google Scholar 

  20. Fijieda S, Lee K, Sunaga H, et al. Staining of interleukin-10 predicts clinical outcome in patients with nasopharyngeal carcinoma. Cancer 1999; 85 (7): 1439–45.

    Article  Google Scholar 

  21. DeVita F, Orditura M, Galizia G, et al. Serum interleukin-10 levels in patients with advanced gastrointestinal malignancies. Cancer 1999; 86 (10): 1936–43.

    Article  CAS  Google Scholar 

  22. Nakagomi H, Pisa P, Pisa EK, et al. Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. Int J Cancer 1995; 63 (3): 366–71.

    Article  PubMed  CAS  Google Scholar 

  23. MenetrierCaux C, Bain C, Favrot MC, Duc A, Blay JY. Renal cell carcinoma induces interleukin 10 and prostaglandin E-2 production by monocytes. Brit J Cancer 1999; 79 (1): 119–30.

    Article  CAS  Google Scholar 

  24. Yamamura M, Modlin RL, Oilmen JD, Moy RL. Local Expression of Antiinflammatory Cytokines in Cancer. J Clin Invest 1993; 91: 1005–10.

    Article  PubMed  CAS  Google Scholar 

  25. Young MRI, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM. Mechanisms of immune suppression in patients with head and neck cancer: Influence on the immune infiltrate of the cancer. hit J Cancer 1996; 67 (3): 333–8.

    CAS  Google Scholar 

  26. Rabinowich H, Suminami Y, Reichert TE, et al. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. hit J Cancer 1996; 68 (3): 276–84.

    PubMed  CAS  Google Scholar 

  27. Venetsanakos E, Beckman I, Bradley J, Skinner JM. High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumours. Br J Cancer 1997; 75 (12): 1826–30.

    Article  PubMed  CAS  Google Scholar 

  28. Krugerkrasagakes S, Krasagakis K, Garbe C, et al. Expression of interleukin 10 in human melanoma. Br J Cancer 1994; 70 (6): 1182–5.

    Article  CAS  Google Scholar 

  29. Huang M, Wang JY, Lee P, et al Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res 1995; 55 (17): 3847–53.

    PubMed  CAS  Google Scholar 

  30. Hishii M, Nitta T, Ishida H, et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995; 37 (6): 1160–6.

    Article  PubMed  CAS  Google Scholar 

  31. AsselinPaturel C, Echchakir H, Carayol G, et al. Quantitative analysis of Thl, Th2 and TGF-beta 1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int J Cancer 1998; 77 (1): 7–12.

    Article  CAS  Google Scholar 

  32. Peng LM, Shu SY, Krauss JC. Monocyte chemoattractant protein inhibits the generation of tumor-reactive T cells. Cancer Res 1997; 57 (21): 4849–54.

    PubMed  CAS  Google Scholar 

  33. Barzegar C, Meazza R, Pereno R, et al. IL-15 is produced by a subset of human melanomas, and is involved in the regulation of markers of melanoma progression through juxtacrine loops. Oncogene 1998; 16 (19): 2503–12.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner SN, Schultewolter T, Wagner C, et al. Immune response against human primary malignant melanoma: A distinct cytokine mRNA profile associated with spontaneous regression. Lab Invest 1998; 78 (5): 541–50.

    PubMed  CAS  Google Scholar 

  35. Moretti S, Pinzi C, Spallanzani A, et al. Immunohistochemical evidence of cytokine networks during progression of human melanocytic lesions. hit J Cancer 1999; 84 (2): 160–8.

    CAS  Google Scholar 

  36. Kunz M, Hartmann A, Flory E, et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma–A potential mechanism for high tumor aggressiveness. Amer J Pathol 1999; 155 (3): 753–63.

    Article  CAS  Google Scholar 

  37. Qin ZH, Richter G, Schuler T, Ibe S, Cao XT, Blankenstein T. B cells inhibit induction of T cell-dependent tumor immunity. Nature Med l998;4(5):627–30.

    Google Scholar 

  38. Wijesuriya R, Maruo S, Zou JP, et al. B cell-mediated down-regulation of 1FN-gamma and IL-12 production induced during antitumor immune responses in the tumor-bearing state. Int Immunol 1998; 10 (8): 1057–65.

    Article  PubMed  CAS  Google Scholar 

  39. Manson LA. Does Antibody-Dependent Epitope Masking Permit Progressive Tumour Growth in the Face of Cell-Mediated Cytotoxicity? Immunol Today 1991; 12: 352–5.

    Article  PubMed  CAS  Google Scholar 

  40. Kharkevitch DD, Seito D, Balch GC, Maeda T, Balch CM, Itoh K. Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma. Int J Cancer 1994; 58 (3): 317–23.

    Article  PubMed  CAS  Google Scholar 

  41. Lee PP, Zeng DF, McCaulay AE, et al. T helper 2-dominant antilymphoma immune response is associated with fatal outcome. Blood l997;90(4):1611–7.

    Google Scholar 

  42. Brady MS, Eckels DD, Lee F, Ree SY, Lee JS. Cytokine production by CD4+T-cells responding to antigen presentation by melanoma cells. Melanoma Res 1999; 9 (2): 173–80.

    Article  PubMed  CAS  Google Scholar 

  43. Groux H, Ogarra A, Bigler M, et al. A CD4(+) T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature I997;389(6652):737–42.

    Google Scholar 

  44. Zeller JC, PanoskaltsisMortari A, Murphy WJ, et al. Induction of CD4(+) T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-beta(1). J Immunol l999;163(7):3684–91.

    Google Scholar 

  45. Seo N, Tokura Y, Matsumoto K, Furukawa F, Takigawa M. Tumour-specific cytotoxic T lymphocyte activity in Th2-type Sezary syndrome: its enhancement by interferon-gamma (IFN-gamma) and IL-12 and fluctuations in association with disease activity. Clin Exp Immunol 1998; 112 (3): 403–9.

    Article  PubMed  CAS  Google Scholar 

  46. Lowes MA, Bishop GA, Crotty K, Bametson RS, Halliday GM. T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas. J Invest Dermatol 1997; 108 (6): 914–9.

    Article  PubMed  CAS  Google Scholar 

  47. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP. Dendritic cells in antitumor immune responses.2. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 1996; 170 (1): 111–9.

    Article  PubMed  CAS  Google Scholar 

  48. Yashiro Y, Tai XG, Toyooka K, et al. A fundamental difference in the capacity to induce proliferation of naive T cells between CD28 and other co-stimulatory molecules. Eur J Immunol 1998; 28 (3): 926–35.

    Article  PubMed  CAS  Google Scholar 

  49. Maeda H, Shiraishi A. TGF-beta contributes to the shift toward Th2-type responses through direct and IL10-mediated pathways in tumor-bearing mice. J Immunol 1996; 156 (1): 73–8.

    PubMed  CAS  Google Scholar 

  50. Handelfemandez ME, Cheng XF, Herbert LM, Lopez DM. Down-regulation of IL-12, not a shift from a T helper-1 to a T helper-2 phenotype, is responsible for impaired IFN-gamma production in mammary tumor-bearing mice. J Immunol 1997; 158 (1): 280–6.

    Google Scholar 

  51. Colombo MP, Vagliani M, Spreafico F, et al. Amount of interleukin 12 available at the tumor site is critical for tumor regression. Cancer Res 1996; 56 (11): 2531–4.

    PubMed  CAS  Google Scholar 

  52. Pellegrini P, Berghella AM, Delbeato T, Cicia S, Adorno D, Casciani CU. Disregulation in Till and TH2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother 1996; 42 (1): 1–8.

    Article  PubMed  CAS  Google Scholar 

  53. Nishimura T, Iwakabe K, Sekimoto M, et al. Distinct role of antigen-specific T helper type 1 (Thl) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190 (5): 617–27.

    Article  PubMed  CAS  Google Scholar 

  54. Golumbek PT, Lazenby AJ, Levitsky HI, et al. Treatment of Established Renal Cancer by Tumor Cells Engineered to Secrete Interleukin-4. Science 1991; 254: 713–6.

    Article  PubMed  CAS  Google Scholar 

  55. Rodolfo M, Zilocchi C, Accomero P, Cappetti B, Arioli I, Colombo MP. IL-4-transduced tumor cell vaccine induces immunoregulatory type 2 CD8 T lymphocytes that cure lung metastases upon adoptive transfer. J Immunol 1999; 163 (4): 1923–8.

    PubMed  CAS  Google Scholar 

  56. Barth RJ, Camp BJ, Martuscello TA, Dain BJ, Memoli VA. The cytokine microenvironment of human colon carcinoma -Lymphocyte expression of tumor necrosis factor-alpha and interleukin-4 predicts improved survival. Cancer 1996; 78 (6): 1168–78.

    Article  PubMed  Google Scholar 

  57. Santra S, Ghosh SK. Interleukin-4 is effective in restoring cytotoxic T cell activity that declines during in vivo progression of a murine B lymphoma. Cancer Immunol Immunother 1997; 44 (5): 291–300.

    Article  PubMed  CAS  Google Scholar 

  58. Richter G, Krugerkrasagakes S, Hein G, et al. Interleukin-10 Transfected into Chinese Hamster Ovary Cells Prevents Tumor Growth and Macrophage Infiltration. Cancer Res 1993; 53 (18): 4134–7.

    PubMed  CAS  Google Scholar 

  59. Giovarelli M, Musiani P, Modesti A, et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol 1995; 155 (6): 3112–23.

    PubMed  CAS  Google Scholar 

  60. Yang GC, Hellstrom ICE, Mizuno MT, Chen LP. In vitro priming of tumor-reactive cytolytic T lymphocytes by combining IL-10 with B7–CD28 costimulation. J Immunol 1995; 155 (8): 3897–903.

    PubMed  CAS  Google Scholar 

  61. Taga K, Chemey B, Tosato G. IL-10 Inhibits Apoptotic Cell Death in Human T-Cells Starved of IL-2. hit Immunol 1993; 5 (12): 1599–608.

    CAS  Google Scholar 

  62. Pawelec G, Hambrecht A, Rehbein A, Adibzadeh M. Interleukin 10 protects activated human T lymphocytes against growth factor withdrawal-induced cell death but only anti-fas antibody can prevent activation-induced cell death. Cytokine 1996; 8 (12): 877–81.

    Article  PubMed  CAS  Google Scholar 

  63. Pawelec G, Pohla H, Scholtz E, et al. Interleukin 10 is a human T cell growth factor in vitro. Cytokine 1995; 7 (4): 355–63.

    Article  PubMed  CAS  Google Scholar 

  64. Vanbergen CAM, Smit WM, Vansluijters DA, Rijnbeek M, Willemze R, Falkenburg JI-IF. Interleukin-10, interleukin-12, and tumor necrosis factor-alpha differentially influence the proliferation of human CD8(+) and CD4(+) T-cell clones. Ann Hematol 1996; 72 (4): 245–52.

    Article  CAS  Google Scholar 

  65. Kirkin AF, Straten PT, Zeuthen J. Differential modulation by interferon gamma of the sensitivity of human melanoma cells to cytolytic T cell clones that recognize differentiation or progression antigens. Cancer Immunol Immunother 1996; 42 (4): 203–12.

    Article  PubMed  CAS  Google Scholar 

  66. Huang SY, Ullrich SE, BarEli M. Regulation of tumor growth and metastasis by interleukin-10: The melanoma experience..1 Interferon Cytokine Res 1999; 19 (7): 697–703.

    Article  PubMed  CAS  Google Scholar 

  67. Scheibenbogen C, Lee KH, Stevanovic S, et al. Analysis of the T cell response to tumor and viral peptide antigens by an IFN gamma-elispot assay. hit J Cancer 1997; 71 (6): 932–6.

    CAS  Google Scholar 

  68. Altomonte M, Gloghini A, Bertola G, et al. Differential Expression of Cell Adhesion Molecules CD54/CD1 la and CD58/CD2 by Human Melanoma Cells and Functional Role in Their Interaction with Cytotoxic Cells. Cancer Res 1993; 53 (14): 3343–8.

    PubMed  CAS  Google Scholar 

  69. Becker JC, Termeer C, Schmidt RE, Brocker EB. Soluble Intercellular Adhesion Molecule-1 Inhibits MHC-Restricted Specific T-Cell Tumor Interaction. J Immunol 1993; 151 (12): 7224–32.

    PubMed  CAS  Google Scholar 

  70. Grothey A, Heistermann P, Philippou S, Voigtmann R. Serum levels of soluble intercellular adhesion molecule-1 (ICAM-1, CD54) in patients with non-small-cell lung cancer: correlation with histological expression of ICAM-1 and tumour stage. Br J Cancer 1998; 77 (5): 801–7.

    Article  PubMed  CAS  Google Scholar 

  71. SanchezRovira P, Jimenez E, Carracedo J, Barneto IC, Ramirez R, Aranda E. Serum levels of intercellular adhesion molecule 1 (ICAM-1) in patients with colorectal cancer: Inhibitory effect on cytotoxicity. Eur J Cancer 1998; 34 (3): 394–8.

    Article  CAS  Google Scholar 

  72. Fonsatti E, Lamaj E, Coral S, et al. In vitro analysis of the melanoma endothelium interaction increasing the release of soluble intercellular adhesion molecule 1 by endothelial cells. Cancer Immunol Immunother 1999; 48 (2–3): 132–8.

    Article  PubMed  CAS  Google Scholar 

  73. Salmaggi A, Eoli M, Frigerio S, Ciusani E, Silvani A, Boiardi A. Circulating intercellular adhesion molecule-I (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and plasma thrombomodulin levels in glioblastoma patients. Cancer Lett 1999; 146 (2): 169–72.

    Article  PubMed  CAS  Google Scholar 

  74. Rosen HR, Ausch C, Reiner G, et al. Downregulation of lymphocyte mitogenesis by breast cancer-associated p43. Cancer Lett 1994; 82 (1): 105–11.

    Article  PubMed  CAS  Google Scholar 

  75. Chan AK, Lockhart DC, vonBemstorff W, et al. Soluble MUC1 secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation. Int J Cancer 1999; 82 (5): 721–6.

    Article  PubMed  CAS  Google Scholar 

  76. Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nature Med 1998; 4 (1): 43–9.

    Article  PubMed  CAS  Google Scholar 

  77. Paul S, Bizouame N, Paul A, et al. Lack of evidence for an immunosuppressive role for MUCI. Cancer Immunol Immunother 1999; 48 (1): 22–8.

    Article  PubMed  CAS  Google Scholar 

  78. Maclean GD, Reddish MA, Longenecker BM. Prognostic significance of preimmunotherapy serum CA27.29 (MUC-1) mucin level after active specific immunotherapy of metastatic adenocarcinoma patients. J Immunother l997;20(1):70–8.

    Google Scholar 

  79. Takao S, Uchikura K, Yonezawa S, Shinchi H, Aikou T. Mucin core protein expression in extrahepatic bile duct carcinoma is associated with metastases to the liver and poor prognosis. Cancer 1999; 86 (10): 1966–75.

    Article  PubMed  CAS  Google Scholar 

  80. Aarli A, Kristoffersen EK, Jensen TS, Ulvestad E, Matre R. Suppressive effect on lymphoproliferation in vitro by soluble annexin II released from isolated placental membranes. Am J Reprod Immunol 1997; 38 (5): 313–9.

    Article  PubMed  CAS  Google Scholar 

  81. Hoskin DW, Reynolds T, Blay J. Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumors. Int J Cancer 1994; 59 (6): 854–5.

    Article  PubMed  CAS  Google Scholar 

  82. Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57 (13): 2602–5.

    PubMed  CAS  Google Scholar 

  83. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396 (67l2): 699–703.

    PubMed  CAS  Google Scholar 

  84. McKallip R, Li RX, Ladisch S. Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 1999;163(7): 37I 8–26.

    Google Scholar 

  85. Uzzo RG, Rayman P, Kolenko V, et al. Renal cell carcinoma-derived gangliosides suppress nuclear factor-kappa B activation in T cells. J Clin Invest l999;104(6):769–76.

    Google Scholar 

  86. Schottelius AJG, Mayo MW, Sartor RB, Badwin AS. Interleukin-10 signaling blocks inhibitor of kappa B kinase activity and nuclear factor kappa B DNA binding. J Biol Chem l999;274(45):31868–74.

    Google Scholar 

  87. Mizoguchi H, Oshea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC. Alterations in Signal Transduction Molecules in Lymphocytes-T from Tumor-Bearing Mice. Science 1992; 258: 1795–8.

    Article  PubMed  CAS  Google Scholar 

  88. Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clinical Cancer Research I996; 2: 161–73.

    Google Scholar 

  89. Finke JH, Zea AH, Stanley J, et al. Loss of T-Cell Receptor zeta-Chain and p56(Ick) in T-Cells Infiltrating Human Renal Cell Carcinoma. Cancer Res 1993; 53 (23): 5613–6.

    PubMed  CAS  Google Scholar 

  90. Nakagomi H, Petersson M, Magnusson I, et al. Decreased Expression of the Signal-Transducing zeta-Chains in Tumor-Infiltrating T-Cells and NK Cells of Patients with Colorectal Carcinoma. Cancer Res 1993; 53 (23): 5610–2.

    PubMed  CAS  Google Scholar 

  91. Kono K, Ressing ME, Brandt RM, et al. Decreased expression of signal-transducing zeta chain on peripheral T cells and NK cells in patients with cervical cancer. Clinical Cancer Research 1996; 2: 1825.

    PubMed  CAS  Google Scholar 

  92. Zea AH, Curti BD, Londo DL, et al. Alterations in T cell receptor and signal-transduction molecules in melanoma patients. Clinical Cancer Research 1995; L:1327–35.

    Google Scholar 

  93. Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL. T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 1997;159(9):441525.

    Google Scholar 

  94. Healy CG, Simons JW, Carducci MA, et al. Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer. Cytometry 1998; 32 (2): 109–19.

    Article  PubMed  CAS  Google Scholar 

  95. Reichert TE, Day R, Wagner EM, Whiteside TL. Absent or low expression of the zeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res 1998; 58 (23): 53447.

    Google Scholar 

  96. Li X, Liu J, Park J-K, et al. T cells from renal carcinoma patients show an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary analysis. Cancer Res 1994; 54: 5424–9.

    PubMed  CAS  Google Scholar 

  97. Ling WJ, Rayman P, Uzzo R, et al. Impaired activation of NF Kappa B in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, I Kappa B alpha. Blood 1998; 92 (4): 1334–41.

    PubMed  CAS  Google Scholar 

  98. Rossi E, Matutes E, Morilla R, Owusuankomah K, Heffeman AM, Catovsky D. Zeta chain and CD28 are poorly expressed on T lymphocytes from chronic lymphocytic leukemia. Leukemia 1996; 10 (3): 494–7.

    PubMed  CAS  Google Scholar 

  99. Gunji Y, Hon S, Ace T, et al. High frequency of cancer patients with abnormal assembly of the T cell receptor-CD3 complex in peripheral blood T lymphocytes. Jpn J Cancer Res 1994; 85: 1189–92.

    Article  PubMed  CAS  Google Scholar 

  100. Matsuda M, Petersson M, Lenkei R, et al. Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: Correlation with the stage of the disease. Int J Cancer 1995; 61 (6): 765–72.

    Article  PubMed  CAS  Google Scholar 

  101. Mulder WM, Bloemena E, Stukart MJ, Kummer JA, Wagstaff J, Scheper RJ. T cell receptor zeta and granzyme B expression in mononuclear cell infiltrates in normal colon mucosa and colon carcinoma. Gut 1997; 40: 113.

    PubMed  CAS  Google Scholar 

  102. Nieland JD, Loviscek K, Kono K, et al. PBLs of early breast carcinoma patients with a high nuclear grade tumor unlike PBLs of cervical carcinoma patients do not show a decreased TCR zeta expression but are functionally impaired. J Immunother 1998; 21 (4): 317–22.

    Article  PubMed  CAS  Google Scholar 

  103. Varadhachary AS, Perdow SN, Hu CG, Ramanarayanan M, Salgame P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc Natl Acad Sci USA 1997; 94 (11): 5778–83.

    Article  PubMed  CAS  Google Scholar 

  104. Maurice MM, Lankester AC, Bezemer AC, et al. Defective TCR-mediated signaling in synovial T cells in rheumatoid arthritis. J Immunol 1997; 159 (6): 2973–8.

    PubMed  CAS  Google Scholar 

  105. Matsuda M, Ulfgren AK, Lenkei R, et al. Decreased expression of signal-transducing CD3 zeta chains in T cells from the joints and peripheral blood of rheumatoid arthritis patients. Scand J Immunol 1998; 47 (3): 254–62.

    Article  PubMed  CAS  Google Scholar 

  106. Liossis SNC, Ding XZ, Dennis GJ, Tsokos GC. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus–Deficient expression of the T cell receptor zeta chain. J Clin Invest 1998; 101 (7): 1448–57.

    Article  PubMed  CAS  Google Scholar 

  107. Zea AH, Ochoa MT, Ghosh P, et al. Changes in signal transduction molecules in patients with lepromatous leprosy. Infect Immun 1997;(in press).

    Google Scholar 

  108. Agrawal S, Marquet J, DelfauLarue MH, et al. CD3 hyporesponsiveness and in vitro apoptosis are features of T cells from both malignant and nonmalignant secondary lymphoid organs. J Clin Invest 1998; 102 (9): 1715–23.

    Article  PubMed  CAS  Google Scholar 

  109. Ardouin L, Boyer C, Gillet A, et al. Crippling of CD3-zeta ITAMs does not impair T cell receptor signaling. Immunity 1999; 10 (4): 409–20.

    Article  PubMed  CAS  Google Scholar 

  110. Choi SH, Chung EJ, Whang DY, Lee SS, Jang YS, Kim CW. Alteration of signal-transducing molecules in tumor-infiltrating lymphocytes and peripheral blood T lymphocytes from human colorectal carcinoma patients. Cancer Immunol Immunother 1998; 45 (6): 299–305.

    Article  PubMed  CAS  Google Scholar 

  111. Kurt RA, Urba WJ, Smith JW, Schoof DD. Peripheral T lymphocytes from women with breast cancer exhibit abnormal protein expression of several signaling molecules. Int J Cancer 1998; 78 (1): 16–20.

    Article  PubMed  CAS  Google Scholar 

  112. Levey DL, Srivastava PK. T cells from late tumor-bearing mice express normal levels of p56(Ick), p59(fyn), ZAP-70, and CD3 zeta despite suppressed cytolytic activity. J Exp Med 1995; 182 (4): 1029–36.

    Article  PubMed  CAS  Google Scholar 

  113. Cardi G, Heaney JA, Schned AR, Phillips DM, Branda MT, Emstoff MS. T-cell receptor xi-chain expression on tumor-infiltrating lymphocytes from renal cell carcinoma. Cancer Res 1997; 57 (16): 3517–9.

    PubMed  CAS  Google Scholar 

  114. Franco JL, Ghosh P, Wiltrout RH, et al. Partial degradation of T-cell signal transduction molecules by contaminating granulocytes during protein extraction of splenic T cells from tumor-bearing mice. Cancer Res 1995; 55 (17): 3840–6.

    PubMed  CAS  Google Scholar 

  115. Correa MR, Ochoa AC, Ghosh P, Mizoguchi H, Harvey L, Longo DL. Sequential development of structural and functional alterations in T cells from tumor-bearing mice. J Immunol 1997; 158 (11): 5292–6.

    PubMed  CAS  Google Scholar 

  116. Deakin AM, Singh K, Crowe JS, et al. A lack of evidence for down-modulation of CD3 zeta expression in colorectal carcinoma and pregnancy using multiple detection. Clin Exp Immunol 1999; 118 (2): 197–204.

    Article  PubMed  CAS  Google Scholar 

  117. Ace T, Okamoto Y, Saito T. Activated macrophages induce structural abnormalities of the T cell receptorCD3 complex. J Exp Med 1995; 181 (5): 1881–6.

    Article  Google Scholar 

  118. Kono K, Salazaronfray F, Petersson M, et al. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 1996; 26 (6): 1308–13.

    Article  PubMed  CAS  Google Scholar 

  119. Otsuji M, Kimura Y, Ace T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 1996;93(23): 13l 19–24.

    Google Scholar 

  120. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H. Caspase-mediated degradation of T-cell receptor zeta-chain. Cancer Res 1999; 59 (7): 1422–7.

    PubMed  CAS  Google Scholar 

  121. Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, Whiteside TL. Lymphocyte apoptosis induced by Fas ligand-expressing ovarian carcinoma cells–Implications for altered expression of T cell receptor in tumor-associated lymphocytes. J Clin Invest 1998; 101 (11): 2579–88.

    Article  PubMed  CAS  Google Scholar 

  122. Lauritzsen GF, Hofgaard PO, Schenck K, Bogen B. Clonal deletion of thymocytes as a tumor escape mechanism. Mt J Cancer 1998; 78 (2): 216–22.

    CAS  Google Scholar 

  123. Niehans GA, Brunner T, Frizelle SP, et al. Human lung carcinomas express Fas ligand. Cancer Res 1997; 57 (6): 1007–12.

    PubMed  CAS  Google Scholar 

  124. Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: Implications for tumor immune escape. Science 1996; 274 (5291): 1363–6.

    Article  PubMed  CAS  Google Scholar 

  125. Chappell DB, Restifo NP. T cell-tumor cell: a fatal interaction? Cancer Immunol Immunother 1998; 47 (2): 65–71.

    Article  PubMed  CAS  Google Scholar 

  126. Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 1997; 94 (12): 6420–5.

    Article  PubMed  CAS  Google Scholar 

  127. Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: The tumor cell strikes back–Commentary. J Immunol 1997; 158 (10): 4521–4.

    PubMed  CAS  Google Scholar 

  128. Ungefroren H, Voss M, Jansen M, et al. Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Res 1998; 58 (8): 1741–9.

    PubMed  CAS  Google Scholar 

  129. Gastman BR, Atarashi Y, Reichert TE, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 1999; 59 (20): 5356–64.

    PubMed  CAS  Google Scholar 

  130. Kume T, Oshima K, Yamashita Y, Shirakusa T, Kikichi M. Relationship between Fas-ligand expression on carcinoma cell and cytotoxic T-lymphocyte response in lymphoepithelioma-like cancer of the stomach. Int J Cancer 1999; 84 (4): 339–43.

    Article  PubMed  CAS  Google Scholar 

  131. Nagao M, Nakajima Y, Hisanaga M, et al. The alteration of Fas receptor and ligand system in hepatocellular carcinomas: How do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 1999;30(2):4l3–21.

    Google Scholar 

  132. Gratas C, Tohma Y, Bamas C, Taniere P, Hainaut P, Ohgaki H. Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 1998;58(10):205762.

    Google Scholar 

  133. Bennett MW, OConnell J, OSullivan GC, et al. The Fas counterattack in vivo: Apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 1998; 160 (11): 5669–75.

    PubMed  CAS  Google Scholar 

  134. Terheyden P, Siedel C, Merkel A, Kampgen E, Brocker EB, Becker JC. Predominant expression of Fas (CD95) ligand in metastatic melanoma revealed by longitudinal analysis. J Invest Dermatol 1999; 112 (6): 899–902.

    Article  PubMed  CAS  Google Scholar 

  135. Rivoltini L, Radrizzani M, Accomero P, et al. Human melanoma-reactive CD4(+) and CD8(+) CTL clones resist Fas ligand-induced apoptosis and use Fas/Fas ligand-independent mechanisms for tumor killing. J Immunol 1998; 161 (3): 1220–30.

    PubMed  CAS  Google Scholar 

  136. Alderson MR, Armitage RJ, Maraskovsky E, et al. Fas Transduces Activation Signals in Normal Human T-Lymphocytes. J Exp Med l993;178(6):2231–5.

    Google Scholar 

  137. Kang SM, Schneider DB, Lin ZH, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med 1997; 3 (7): 738–43.

    Article  PubMed  CAS  Google Scholar 

  138. Tsutsui T, Mu J, Ogawa M, et al. Administration of IL-12 induces a CD3(+)CD4(-)CD8(-)B220(+) lymphoid population capable of eliciting cytolysis against Fas-positive tumor cells. J Immunol 1997; 159 (6): 2599–605.

    PubMed  CAS  Google Scholar 

  139. Medema JP, deJong 1, vanHall T, Melief CJM, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 1999; 190 (7): 1033–8.

    Article  PubMed  CAS  Google Scholar 

  140. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 1999; 190 (7): 1025–31.

    Article  PubMed  CAS  Google Scholar 

  141. OwenSchaub LB, vanGolen KL, Hill LL, Price JE. Fas and fas ligand interactions suppress melanoma lung metastasis. J Exp Med 1998; 188 (9): 1717–23.

    Article  CAS  Google Scholar 

  142. Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: Selective rescue by caspase inhibition. J Immunol 1999; 162 (6): 3273–9.

    PubMed  CAS  Google Scholar 

  143. Suzuki I, Fink PJ. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med 1998; 187 (1): 123–8.

    Article  PubMed  CAS  Google Scholar 

  144. Gimmi CD, Morrison BW, Mainprice BA, et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells. Nature Med 1996; 2 (12): 1367–70.

    Article  PubMed  CAS  Google Scholar 

  145. Boussiotis V, Freeman GJ, Gribben JG, Hayes DF, Nadler LM. No evidence for MUC 1-induced apoptosis. Nature Med 1998; 4: 1093.

    Article  PubMed  CAS  Google Scholar 

  146. Agrawal B, Gendler SJ, Longenecker BM. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol Med Today 1998; 4 (9): 397–403.

    Article  PubMed  CAS  Google Scholar 

  147. Agrawal B, Krantz MJ, Parker J, Longenecker BM. Expression of MUC1 mucin on activated human T cells: Implications for a role of MUC1 in normal immune regulation. Cancer Res 1998; 58 (18): 4079–81.

    PubMed  CAS  Google Scholar 

  148. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-l0-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999; 93 (5): 1634–42.

    PubMed  CAS  Google Scholar 

  149. StaveleyOCarroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 1998; 95 (3): 1178–83.

    Article  CAS  Google Scholar 

  150. Gimmi CD, Freeman GJ, Gribben JG, Gray G, Nadler LM. Human T-Cell Clonal Anergy Is Induced by Antigen Presentation in the Absence of B7 Costimulation. Proc Natl Acad Sci USA 1993; 90 (14): 6586–90.

    Article  PubMed  CAS  Google Scholar 

  151. Sloanlancaster J, Evavold BD, Allen PM. Induction of T-Cell Anergy by Altered T-Cell-Receptor Ligand on Live Antigen-Presenting Cells. Nature 1993; 363 (6425): 156–9.

    Article  CAS  Google Scholar 

  152. Desilva DR, Urdahl KB, Jenkins MK. Clonal Anergy Is Induced Invitro by T-Cell Receptor Occupancy in the Absence of Proliferation. J Immunol 1991; 147: 3261–7.

    PubMed  CAS  Google Scholar 

  153. Jenkins MK. The Role of Cell Division in the Induction of Clonal Anergy. Immunol Today 1992; 13: 69–73.

    Article  PubMed  CAS  Google Scholar 

  154. Loftus DJ, Squarcina P, Nielsen MB, et al. Peptides derived from self-proteins as partial agonists and antagonists of human CD8(+) T-Cell clones reactive to melanoma/melanocyte epitope MART1(27–35). Cancer Res 1998; 58 (11): 2433–9.

    PubMed  CAS  Google Scholar 

  155. Klenerman P, Zinkemagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394 (6692): 482–5.

    Article  PubMed  CAS  Google Scholar 

  156. Toes REM, Offringa R, Blom RJJ, Melief CJM, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996; 93 (15): 7855–60.

    Article  PubMed  CAS  Google Scholar 

  157. Boussiotis VA, Barber DL, Nakarai T, et al. Prevention of T cell anergy by signaling through the gamma(c) chain of the IL-2 receptor. Science 1994; 266 (5187): 1039–42.

    Article  PubMed  CAS  Google Scholar 

  158. Antoniou A, McCormick D, Scott D, et al. T cell tolerance and activation to a transgene-encoded tumor antigen. Eur J Immunol 1996; 26 (5): 1094–102.

    Article  PubMed  CAS  Google Scholar 

  159. Toes REM, Blom RJJ, Offringa R, Kast WM, Melief CJM. Enhanced tumor outgrowth after peptide vaccination -Functional deletion of tumor-specific CU induced by peptide vaccination can lead to the inability to reject tumors. J Immunol 1996; 156 (10): 3911–8.

    PubMed  CAS  Google Scholar 

  160. Hersey P, Si ZY, Smith MJ, Thomas WD. Expression of the co-stimulatory molecule B7 on melanoma cells. TM J Cancer 1994; 58 (4): 527–32.

    CAS  Google Scholar 

  161. Antonia SJ, Munozantonia T, Soldevila G, Miller J, Flavell RA. B7–1 expression by a non-antigen presenting cell-derived tumor. Cancer Res 1995; 55 (11): 2253–6.

    PubMed  CAS  Google Scholar 

  162. Denfeld RW, Dietrich A, Wuttig C, et al. In situ expression of B7 and CD28 receptor families in human malignant melanoma: Relevance for T-cell-mediated anti-tumor immunity. Int J Cancer 1995; 62 (3): 25965.

    Article  Google Scholar 

  163. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271 (5256): 1734–6.

    Article  PubMed  CAS  Google Scholar 

  164. Shrikant P, Khoruts A, Mescher NW. CTLA-4 blockade reverses CD8(+) T cell tolerance to tumor by a CD4(+) T cell-and IL-2-dependent mechanism. Immunity 1999; 11 (4): 483–93.

    Article  PubMed  CAS  Google Scholar 

  165. Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999; 397 (6716): 263–6.

    Article  PubMed  CAS  Google Scholar 

  166. Lee PP, Yee C, Savage PA, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 1999; 5 (6): 677–85.

    Article  PubMed  CAS  Google Scholar 

  167. Garrido F, Ruizcabello F, Cabrera T, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18 (2): 89–95.

    Article  PubMed  CAS  Google Scholar 

  168. Goepel JR, Rees RC, Rogers K, Stoddard CJ, Thomas WEG, Shepherd L. Loss of Monomorphic and Polymorphic HLA Antigens in Metastatic Breast and Colon Carcinoma. Br J Cancer 1991; 64: 880–3.

    Article  PubMed  CAS  Google Scholar 

  169. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S. Down-regulation of HLA class I antigen-processing molecules in malignant melanoma - Association with disease progression. Amer J Pathol 1999; 154 (3): 74554.

    Article  Google Scholar 

  170. Amiot L, Onno M, Lamy T, et al. Loss of HLA molecules in B lymphomas is associated with an aggressive clinical course. Br J Haematol 1998; 100 (4): 655–63.

    Article  PubMed  CAS  Google Scholar 

  171. Geertsen RC, Hofbauer GFL, Yue FY, Manolio S, Burg G, Dummer R. Higher frequency of selective losses of HLA-A and -B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol 1998; 111 (3): 497–502.

    Article  PubMed  CAS  Google Scholar 

  172. Cabrera T, Fernandez MA, Sierra A, et al. High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum Immunol 1996; 50 (2): 127–34.

    Article  PubMed  CAS  Google Scholar 

  173. Restifo NP, Esquivel F, Kawakami Y, et al. Identification of Human Cancers Deficient in Antigen Processing. J Exp Med 1993; 177: 265–72.

    Article  PubMed  CAS  Google Scholar 

  174. Cromme FV, Airey J, Heemels MT, et al. Loss of Transporter Protein, Encoded by the Tap-1 Gene, Is Highly Correlated with Loss of HLA Expression in Cervical Carcinomas. J Exp Med 1994; 179 (1): 335–40.

    Article  PubMed  CAS  Google Scholar 

  175. Korkolopoulou P, Kaklamanis L, Pezzella F, Harris AL, Gatter KC. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer l996;73(2):148–53.

    Google Scholar 

  176. Sanda MG, Restifo NP, Walsh JC, et al. Molecular characterization of defective antigen processing in human prostate cancer. J Nat Cancer Inst l995;87(4):280–5.

    Google Scholar 

  177. Chen HL, Gabrilovich D, Tampe R, Girgis KR, Nadaf S, Carbone DP. A functionally defective allele of TAPI results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 1996; 13 (2): 210–3.

    Article  PubMed  CAS  Google Scholar 

  178. Seliger B, Hohne A, Jung D, et al. Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Exp Hematol 1997; 25 (7): 608–14.

    PubMed  CAS  Google Scholar 

  179. Traversari C, Meazza R, Coppolecchia M, et al. IFN-gamma gene transfer restores HLA-class I expression and MAGE-3 antigen presentation to CTL in HLA-deficient small cell lung cancer. Gene Therapy 1997; 4 (10): 1029–35.

    Article  PubMed  CAS  Google Scholar 

  180. Johnsen A, France 1, Sy MS, Harding CV. Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines. Cancer Res 1998; 58 (I 6): 3660–7.

    PubMed  CAS  Google Scholar 

  181. Johnsen AK, Templeton DJ, Sy MS, Harding CV. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999; 163 (8): 4224–31.

    PubMed  CAS  Google Scholar 

  182. Maeurer MJ, Gollin SM, Martin D, et al. Tumor escape from immune recognition - Lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996;98(7):163341.

    Google Scholar 

  183. Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M. Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone. Scand J Immunol 1997; 45 (6): 605–12.

    Article  PubMed  CAS  Google Scholar 

  184. Wang ZG, Marincola FM, Rivoltini L, Parmiani G, Ferrone S. Selective histocompatibility leukocyte antigen (HLA)-A2 loss caused by aberrant pre-mRNA splicing in 624MEL28 melanoma cells. J Exp Med 1999;190(2)205–15.

    Google Scholar 

  185. Hicklin DJ, Wang ZG, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta 2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 1998; 101 (12): 2720–9.

    Article  PubMed  CAS  Google Scholar 

  186. Benitez R, Godelaine D, LopezNevot MA, et al. Mutations of the beta(2)-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigen 1998; 52 (6): 520–9.

    Article  CAS  Google Scholar 

  187. Branch P, Bicknell DC, Rowan A, Bodmer WF, Karran P. Immune surveillance in colorectal carcinoma. Nat Genet 1995; 9 (3): 231–2.

    Article  PubMed  CAS  Google Scholar 

  188. Koeppen H, Acena M, Drolet A, Rowley DA, Schreiber H. Tumors with Reduced Expression of a Cytotoxic T Lymphocyte Recognized Antigen Lack Immunogenicity But Retain Sensitivity to Lysis by Cytotoxic T Lymphocytes. Eur J Immunol 1993; 23 (11): 2770–6.

    Article  PubMed  CAS  Google Scholar 

  189. Pende D, Accame L, Pareti L, et al. The susceptibility to natural killer cell-mediated lysis of HLA class I-positive melanomas reflects the expression of insufficient amounts of different FILA class I alleles. Eur J Immunol 1998; 28 (8): 2384–94.

    Article  PubMed  CAS  Google Scholar 

  190. Suzue K, Zhou XZ, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Nat! Acad Sci USA 1997; 94 (24): 13146–51.

    Article  CAS  Google Scholar 

  191. Moretta A, Bottino C, Vitale M, et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol; 14619–648.

    Google Scholar 

  192. Lanier LL, Phillips JH. Inhibitory MHC class I receptors on NK cells and T cells. Immunol Today 1996; 17 (2): 86–91.

    Article  PubMed  CAS  Google Scholar 

  193. Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 1995; 25 (2): 340–7.

    Article  PubMed  CAS  Google Scholar 

  194. Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CU expressing an NK inhibitory receptor. Immunity 1997; 6: 199–208.

    Article  PubMed  CAS  Google Scholar 

  195. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CU expressing an NK inhibitory receptor. Immunity 1997; 6 (2): 199–208.

    Article  PubMed  CAS  Google Scholar 

  196. Speiser DE, Pittet MJ, Valmori D, et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J Exp Med 1999; 190 (6): 775–82.

    Article  PubMed  CAS  Google Scholar 

  197. Mingari MC, Ponte M, Bertone S, et al. FILA class 1-specific inhibitory receptors in human T lymphocytes: Interleukin 15-induced expression of CD94/NKG2A in superantigen-or alloantigen-activated CD8(+) T cells. Proc Natl Acad Sci USA 1998; 95 (3): 1172–7.

    Article  PubMed  CAS  Google Scholar 

  198. Guerra N, Benlhassan K, Carayol G, et al. Effect of tumor growth factor-beta on NK receptor expression by allostimulated CD8(+) T lymphocytes. Eur Cytokine Netw 1999; 10 (3): 357–63.

    PubMed  CAS  Google Scholar 

  199. Noppen C, Schaefer C, Zajac P, et al. C-type lectin-like receptors in peptide-specific HLA class I-restricted cytotoxic T lymphocytes: differential expression and modulation of effector functions in clones sharing identical TCR structure and epitope specificity. Eur J Immunol 1998; 28 (4): 1134–42.

    Article  PubMed  CAS  Google Scholar 

  200. Paul P, RouasFreiss N, KhalilDaher I, et al. FILA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci USA 1998; 95 (8): 4510–5.

    Article  PubMed  CAS  Google Scholar 

  201. LeGal FA, Riteau B, Sedlik C, et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 1999;11(81:1351–6.

    Google Scholar 

  202. Robbins PF, Elgamil M, Li YF, et al. Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes. J Immunol 1995;154(11):594450.

    Google Scholar 

  203. Cormier JN, Abati A, Fetsch P, et al. Comparative analysis of the in vivo expression of tyrosinase, MART1/Melan-A, and gp100 in metastatic melanoma lesions: Implications for immunotherapy. J Immunother 1998; 21 (1): 27–31.

    Article  PubMed  CAS  Google Scholar 

  204. Hofbauer GFL, Kamarashev J, Geertsen R, Boni R, Dummer R. Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res 1998; 8 (4): 337–43.

    Article  PubMed  CAS  Google Scholar 

  205. Lee KH, Panelli MC, Kim CJ, et al. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination J Immunol 1998; 161 (8): 4183–94.

    CAS  Google Scholar 

  206. Valmori D, Lienard D, Waanders G, Rimoldi D, Cerottini JC, Romero P. Analysis of MAGE-3-specific cytolytic T lymphocytes in human leukocyte antigen-A2 melanoma patients. Cancer Res 1997; 57 (4): 73541.

    Google Scholar 

  207. Lethe B, Vanderbruggen P, Brasseur F, Boon T. MAGE-1 expression threshold for the lysis of melanoma cell lines by a specific cytotoxic T lymphocyte. Melanoma Res 1997; 7: S83–8.

    PubMed  CAS  Google Scholar 

  208. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8(+) cytotoxic-T-cell responses: Evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996; 66 (4): 470–6.

    Article  PubMed  CAS  Google Scholar 

  209. Jager E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: Independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 1997; 71 (2): 1427.

    Google Scholar 

  210. Chaux P, Moutet M, Faivre J, Martin F, Martin M. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7–1 and B7–2 costimulatory molecules of the T-cell activation. Lab Invest 1996; 74 (5): 975–83.

    PubMed  CAS  Google Scholar 

  211. Ninomiya T, Akbar F, Masumoto T, Horiike N, Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 1999; 31 (2): 323–31.

    Article  PubMed  CAS  Google Scholar 

  212. Nestle FO, Burg G, Fah J, Wronesmith T, Nickoloff BJ. Human sunlight-induced basal-cell-carcinomaassociated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 1997; 150 (2): 641–51.

    PubMed  CAS  Google Scholar 

  213. Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 1997; 73 (3): 309–16.

    Article  PubMed  CAS  Google Scholar 

  214. Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 1999; 190 (10): 1417–25.

    Article  PubMed  CAS  Google Scholar 

  215. Girolomoni G, Ricciardicastagnoli P. Dendritic cells hold promise for immunotherapy. Immunol Today 1997; 18 (3): 102–4.

    Article  PubMed  CAS  Google Scholar 

  216. Qin ZH, Nof¢ G, Mohaupt M, Blankenstein T. Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J Immunol 1997; l 59(2):770–6.

    Google Scholar 

  217. Sharma S, Stolina M, Lin Y, et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 1999; 1 63(9):5020–8.

    Google Scholar 

  218. Liu LM, Rich BE, Inobe J, Chen WJ, Weiner HL. Induction of T(h)2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4(+) T cells to secrete IL-4. Int Immunol 1998; 10 (8): 1017–26.

    Article  PubMed  CAS  Google Scholar 

  219. Thomas GR, Chen Z, Oechsli MN, Hendler FJ, VanWaes C. Decreased expression of CD80 is a marker for increased tumorigenicity In a new murine model of oral squamous-cell carcinoma. Int J Cancer 1999; 82 (3): 377–84.

    Article  PubMed  CAS  Google Scholar 

  220. Zheng P, Sarma S, Guo Y, Liu Y. Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: Lessons from recurrent tumors. Cancer Res 1999; 59 (14): 3461–7.

    CAS  Google Scholar 

  221. Koyama S, Maruyama T, Adachi S, Nozue M. Expression of costimulatory molecules, B7-I and B7–2 on human gastric carcinoma. J Cancer Res Clin Oncol 1998; 124 (7): 383–8.

    Article  PubMed  CAS  Google Scholar 

  222. Stremmel C, Greenfield EA, Howard E, Freeman GJ, Kuchroo VK. B7–2 expressed on EL4 lymphoma suppresses antitumor immunity by an interleukin 4-dependent mechanism. J Exp Med l999;189(6):91930.

    Google Scholar 

  223. vonLeoprechting A, vanderBruggen P, Pahl HL, Aruffo A, Simon JC. Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis. Cancer Res 1999; 59 (6): 1287–94.

    CAS  Google Scholar 

  224. Vora AR, Rodgers S, Parker AJ, Start R, Rees RC, Murray AK. An immunohistochemical study of altered immunomodulatory molecule expression in head and neck squamous cell carcinoma. Br J Cancer 1997; 76 (7): 836–44.

    Article  PubMed  CAS  Google Scholar 

  225. Pandolfi F, Trentin L, Boyle LA, et al. Expression of Cell Adhesion Molecules in Human Melanoma Cell Lines and Their Role in Cytotoxicity Mediated by Tumor-Infiltrating Lymphocytes. Cancer 1992; 69: 116573.

    Google Scholar 

  226. LeGuiner S, LeDrean E, Labarriere N, et al. LFA-3 co-stimulates cytokine secretion by cytotoxic T lymphocytes by providing a TCR-independent activation signal. Eur J Immunol 1998; 28 (4): 1322–31.

    Article  CAS  Google Scholar 

  227. Anichini A, Mortarini R, Alberti S, Mantovani A, Parmiani G. T-Cell-Receptor Engagement and Tumor ICAM-1 Up-Regulation Are Required to by-Pass Low Susceptibility of Melanoma Cells to Autologous CTL-Mediated Lysis. Int J Cancer 1993; 53: 994–1001.

    Article  PubMed  CAS  Google Scholar 

  228. Anichini A, Mortarini R, Parmiani G. beta(1)-Integrins on Melanoma Clones Regulate the Interaction with Autologous Cytolytic T-Cell Clones. J Immunother 1992; 12: 183–6.

    Article  PubMed  CAS  Google Scholar 

  229. Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates FILA class-1, HL.A class-II and ICAM-1 molecules. Int J Cancer 1997; 71 (4): 630–7.

    Article  PubMed  CAS  Google Scholar 

  230. Koulis A, Diss T, Isaacson PG, Dogan A. Characterization of tumor-infiltrating T lymphocytes in B-cell lymphomas of mucosa-associated lymphoid tissue. Am J Pathol 1997; 151 (5): 1353–60.

    PubMed  CAS  Google Scholar 

  231. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188 (2): 341–50.

    Article  PubMed  CAS  Google Scholar 

  232. Hudson JD, Shoaibi MA, Maestro R, Camero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999; 190 (10): 1375–82.

    Article  PubMed  CAS  Google Scholar 

  233. Thomas WD, Smith MJ, Si Z, Hersey P. Expression of the co-stimulatory molecule CD40 on melanoma cells. Int J Cancer 1996; 68 (6): 795–801.

    Article  PubMed  CAS  Google Scholar 

  234. Peoples GE, Blotnick S, Takahashi K, Freeman MR, Klagsbrun M, Eberlein TJ. T lymphocytes that infiltrate tumors and atherosclerotic plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: A potential pathologic role. Proc Natl Acad Sci USA 1995; 92 (14): 6547–51.

    Article  CAS  Google Scholar 

  235. Freeman MR, Schneck FX, Gagnon ML, et al. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: A potential role for T cells in angiogenesis. Cancer Res 1995; 55 (18): 4140–5.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pawelec, G. (2001). Escape Mechanisms in Tumour Immunity. In: Robins, R.A., Rees, R.C. (eds) Cancer Immunology. Immunology and Medicine Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0963-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0963-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5714-3

  • Online ISBN: 978-94-017-0963-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics