Skip to main content

Anti-idiotypic vaccination

  • Chapter
Cancer Immunology

Part of the book series: Immunology and Medicine Series ((IMME,volume 30))

  • 204 Accesses

Abstract

An effective cancer vaccine should stimulate cytotoxic T cells (CTL), helper T cells and antibodies. The CTLs will efficiently kill all tumour cells expressing target antigen and class I MHC. Helper T cells responding to MHC class II presented epitopes will help in the production of CTLs but will also migrate to tissues expressing locally presented target antigen. Once they have localised within the tissues they will release the cytotoxic cytokines (TNFα, INFβ, IFNγ) and recruit non specific effector cells such as macrophages; there is also evidence that the products of CD4 T cells can damage the vasculature of tumours[1]. All of these effects will result in tumour cell death of antigen positive or negative cells. They are therefore synergistic with CTL killing. T helper cells can also recruit natural killer (NK) cells that will kill any tumour cells that have lost MHC expression[2]. As this is a common mechanism for tumours to evade CTL killing it is an important component of any immune response induced by a cancer vaccine. The potential of antibody responses to contribute to anti-tumour effects is less clear. The ‘type 1’ T cells that help in the activation of CTLs can help in the production of specific subclasses of antibodies (IgG2a in mice and IgG1in humans). These antibodies will kill any tumour cell expressing target antigen by antibody dependent cellular cytotoxicity that is mediated by Fc receptor expressing leucocytes, including NK cells. T helper cell recruitment of NK cells into tumour tissues is therefore also essential for antibody mediated tumour killing. Complement fixation could also play a role, either as a lytic effector mechanism, or as a trigger for activating local immune responses. The remainder of this chapter will now consider how an anti-idiotypic antibody can fulfil these requirements for this effective cancer vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Qin Z and Blankenstein T, CD4+ T cell mediated tumour rejection involves inhibition of angiogenesis that is dependent on IFNgamma receptor expression by nonhematopoietic cells. Immunity, 2000; 12: 677–686.

    Article  PubMed  CAS  Google Scholar 

  2. Karre K, How to recognize a foreign submarine. Immunological Reviews, 1997; 155: 5–9.

    Article  PubMed  CAS  Google Scholar 

  3. Jerne NK, Idiotypic networks and other preconceived ideas. Immunological Reviews, 1984; 79: 5–24.

    Article  PubMed  CAS  Google Scholar 

  4. Kurts C, Kosaka H, Carbone FR, Miller J, and Heath WR, Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med, 1997; 186: 239–245.

    Google Scholar 

  5. Matzinger P, An innate sense of danger. 1044–5323, 1998; 10: 399–415.

    CAS  Google Scholar 

  6. Ke Y and Kapp JA, Exogenous antigens gain access to the major histocompatibility complex class I processing pathway in B cells by receptor-mediated uptake. J Exp Med, 1996; 184: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  7. Liu CL, Goldstein J, Graziano RF, He J, Oshea JK, Deo Y, and Guyre PM, Fc gamma RI-targeted fusion proteins result in efficient presentation by human monocytes of antigenic and antagonist T cell epitopes. J Clin Invest, 1996; 98: 2001–2007.

    Article  PubMed  CAS  Google Scholar 

  8. Irvine K and Schlom J, Induction Of Delayed-Type Hypersensitivity Responses By Monoclonal Antiidiotypic Antibodies to Tumor-Cells Expressing Carcinoembryonic Antigen and Tumor-Associated Glycoprotein-72. Cancer Immunol Immunother, 1993; 36: 281–292.

    Article  PubMed  CAS  Google Scholar 

  9. Ruiz PJ, Wolkowicz R, Waisman A, Hirschberg DL, Carmi P, Erez N, Garren H, Herkel J, Karpuj M, Steinman L, River V, and Cohen IR, Idiotypic immunization induces immunity to mutated p53 and tumor rejection. Nature Medicine, 1998; 4: 710–712.

    Article  PubMed  CAS  Google Scholar 

  10. Bronte V, Apolloni E, Ronca R, Zamboni P, Overwijk WW, Surman DR, Restifo NP, and Zanovello P, Genetic vaccination with “self’ tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res, 2000; 60: 253–258.

    PubMed  CAS  Google Scholar 

  11. Austin EB, Robins RA, Durrant LG, Price MR, and Baldwin RW, Human Monoclonal Anti-Idiotypic Antibody to the Tumor-Associated Antibody 791T/36. Immunol, 1989; 67: 525–530.

    CAS  Google Scholar 

  12. Zaghouani H, Kuzu Y, Kuzu H, Brumeanu TD, Swiggard WJ, Steinman RM, and Bona CA, Contrasting efficacy of presentation by major histocompatibility complex class-I and class-II products when peptides are administered within a common protein carrier, self immunoglobulin. Euop J Immunol, 1993; 23: 2746–2750.

    Article  CAS  Google Scholar 

  13. Foon KA, John WJ, Chakraborty M, Das R, Teitelbaum A, Garrison J, Kashala O, Chatterjee SK, and Bhattacharya-Chatterjee M, Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol, 1999; 17: 2889–2895.

    PubMed  CAS  Google Scholar 

  14. Durrant LG, Buckley DJ, Robins RA, and Spendlove I, 105AD7 cancer vaccine stimulates anti-tumour helper and cytotoxic T- cell responses in colorectal cancer patients but repeated immunisations are required to maintain these responses. Int J Cancer, 2000; 85: 87–92.

    Article  PubMed  CAS  Google Scholar 

  15. Spendlove I, Li L, Carmichael J, and Durrant LG, Decay accelerating factor (CD55): A target for cancer vaccines? Cancer Res, 1999; 59: 2282–2286.

    PubMed  CAS  Google Scholar 

  16. Austin EB, Robins RA, Baldwin RW, and Durrant LG, Induction Of Delayed-Hypersensitivity to Human Tumor-Cells With a Human Monoclonal Antiidiotypic Antibody. J nati Cancer Inst, 1991; 83: 1245–1248.

    Article  CAS  Google Scholar 

  17. Robins RA, Denton GWL, Hardcastle JD, Austin EB, Baldwin RW, and Durrant LG, Antitumor Immune-Response and Interleukin-2 Production Induced In Colorectal-Cancer Patients By Immunization With Human Monoclonal Antiidiotypic Antibody. Cancer Res, 1991; 51: 5425–5429.

    PubMed  CAS  Google Scholar 

  18. Denton GWL, Durrant LG, Hardcastle JD, Austin EB, Sewell HF, and Robins RA, Clinical Outcome Of Colorectal-Cancer Patients Treated With Human Monoclonal Antiidiotypic Antibody. Int J Cancer, 1994; 57: 10–14.

    Article  PubMed  CAS  Google Scholar 

  19. Dunant LG, Buckley TJD, Denton GWL, Hardcastle JD, Sewell HF, and Robins RA, Enhanced Cell-Mediated Tumor Killing In Patients Immunized With Human Monoclonal Antiidiotypic Antibody 105AD7. Cancer Res, 1994; 54: 4837–4840.

    Google Scholar 

  20. Maxwell-Armstrong CA, Durrant LG, Robins RA, Galvin AM, Scholefield JH, and Hardcastle JD, Increased activation of lymphocytes infiltrating primary colorectal cancers following immunisation with the anti-idiotypic monoclonal antibody 105AD7. Gut, 1999; 45: 593–598.

    Article  PubMed  CAS  Google Scholar 

  21. Pride MW, Shi H, Anchin JM, Linthicum DS, Loverde PT, Thakur A, and Thanavala Y, Molecular Mimicry Of Hepatitis-B Surface-Antigen By an Antiidiotype- Derived Synthetic Peptide. Proc Natl Acad Sci USA, 1992; 89: 11900–11904.

    Article  PubMed  CAS  Google Scholar 

  22. Chatterjee SK, Tripathi PK, Chakraborty M, Yannelli J, Wang HT, Foon KA, Maier CC, Blalock JE, and Bhattacharya-Chatterjee M, Molecular mimicry of carcinoembryonic antigen by peptides derived from the structure of an anti-idiotype antibody. Cancer Res, 1998; 58: 1217–1224.

    PubMed  CAS  Google Scholar 

  23. Ban N, Escobar C, Garcia R, Hasel K, Day J, Greenwood A, and McPherson A, Crystal-Structure Of an Idiotype Antiidiotype Fab Complex. Proc Natl Acad Sci USA, 1994; 91: 1604–1608.

    Article  PubMed  CAS  Google Scholar 

  24. Williams WV, London SD, Weiner DB, Wadsworth S, Berzofsky JA, Robey F, Rubin DH, and Greene MI, Immune response to a molecularly defined internal image anti-idiotype. J Immunol, 1989; 142: 4392–4400.

    PubMed  CAS  Google Scholar 

  25. Dunant LG, Robins RA, and Baldwin RW, Flow Cytometric Screening Of Monoclonal-Antibodies For Drug or Toxin Targeting to Human Cancer. J nati Cancer Inst, 1989; 81: 688–696.

    Article  Google Scholar 

  26. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, and White DE, Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma Nature Medicine, 1998; 4: 321–327.

    CAS  Google Scholar 

  27. Salazar E, Zaremba S, Arlen PM, Tsang KY, and Schlom J, Agonist peptide from a cytotoxic T-lymphocyte epitope of human carcinoembryonic antigen stimulates production of TC1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer, 2000; 85: 829–838.

    Article  PubMed  CAS  Google Scholar 

  28. Bona C, Brumeanu TD, and Zaghouani H, Immunogenicity of Microbial Peptides Grafted in Self Immunoglobulin Molecules. Cell Mol Biol, 1994; 40: 21–30.

    PubMed  CAS  Google Scholar 

  29. Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, and Davis MM, Phenotypic Analysis of Antigen-Specific T-Lymphocytes. Science, 1996; 274: 94–96.

    Article  PubMed  CAS  Google Scholar 

  30. Callan MFC, Tan L, Annels N, Ogg GS, Wilson JDK, Ocallaghan CA, Steven N, McMichael AJ, and Rickinson AB, Direct visualization of antigen-specific CD8(+) T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med, 1998; 187: 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  31. Durrant LG, Denton GWL, Jacobs E, Mee M, Moss R, Austin EB, Baldwin RW, Hardcastle JD, and Robins RA, An Idiotypic Replica Of Carcinoembryonic Antigen Inducing Cellular and Humoral Responses Directed Against Human Colorectal Tumors. Int J Cancer, 1992; 50: 811–816.

    Article  PubMed  CAS  Google Scholar 

  32. Bentley GA, Bhat TN, Boulot G, Fischmann T, Navaza J, Poljak RJ, Riottot MM, and Tello D, Immunochemical and Crystallographic Studies of Antibody D1.3 in Its Free, Antigen-Liganded, and Idiotope-Bound States. Cold Spring Harbor Symp Quant Biol, 1989; 54: 239–245.

    Article  PubMed  CAS  Google Scholar 

  33. Kirch RD, Beale D, He M, Corper AL, Krawinkel-Brenig U, and Taussig MJ, Anti-anti-idiotypic (Ab3) antibodies that bind progesterone I lalpha-bovine serum albumin differ in their combining sites from antibodies raised directly against the antigen. Immunol, 2000; 100: 152–164.

    Article  Google Scholar 

  34. Foon KA, Lutzky J, Baral RN, Yannelli JR, Hutchins L, Teitelbaum A, Kashala OL, Das R, Garrison J, Reisfeld RA, and Bhattacharya-Chatterjee M, Clinical and immune responses in advanced melanoma patients immunized with an anti-idiotype antibody mimicking disialoganglioside GD2. J Clin Oncol, 2000; 18: 376–384.

    PubMed  CAS  Google Scholar 

  35. Sharpe AH, Gaulton GN, McDade KK, Fields BN, and Greene MI, Syngeneic monoclonal antiidiotype can induce cellular immunity to Reovirus. J Exp Med, 1984; 160: 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  36. Herlyn D, Wettendorff M, Schmoll E, Iliopoulos D, Schedel I, Dreikhausen U, Raab R, Ross AH, Jaksche H, Scriba M, and Koprowski H, Anti-Idiotype Immunization Of Cancer-Patients–Modulation Of the Immune-Response. Proc Natl Acad Sci USA, 1987; 84: 8055–8059.

    Article  PubMed  CAS  Google Scholar 

  37. Herlyn D, Ross AH, Iliopoulos D, and Koprowski H, Induction Of Specific Immunity to Human-Colon Carcinoma By Anti- Idiotypic Antibodies to Monoclonal-Antibody Co17–1a Euop J Immunol, 1987; 17: 1649–1652.

    CAS  Google Scholar 

  38. Fagerberg J, Steinitz M, Wigzell H, Askelof P, and Mellstedt H, Human Antiidiotypic Antibodies Induced a Humoral and Cellular Immune- Response Against a Colorectal Carcinoma-Associated Antigen In Patients. Proc Natl Acad Sci USA, 1995; 92: 4773–4777.

    Article  PubMed  CAS  Google Scholar 

  39. Mittelman A, Chen ZJ, Yang H, Wong GY, and Ferrone S, Human High-Molecular-Weight Melanoma-Associated Antigen (Hmw-Maa) Mimicry By Mouse Antiidiotypic Monoclonal-Antibody Mk2–23–Induction Of Humoral Anti-Hmw-Maa Immunity and Prolongation Of Survival In Patients With Stage-Iv Melanoma Proc Natl Acad Sci USA, 1992; 89: 466–470.

    CAS  Google Scholar 

  40. Herlyn D, Somasundaram R, Zaloudik J, Li W, Jacob L, Harris D, Kieny MP, Ricciardi R, Gonczol E, Sears H, and Mastrangelo M, Cloned Antigens and Antiidiotypes. Hybridoma, 1995; 14: 159–166.

    Article  PubMed  CAS  Google Scholar 

  41. Durrant LG, MaxwellArmstrong C, Buckley D, Amin S, Robins RA, Carmichael J, and Scholefield JH, A neoadjuvant clinical trial in colorectal cancer patients of the human anti-idiotypic antibody 105AD7, which mimics CD55. 1078–0432, 2000; 6: 422–430.

    CAS  Google Scholar 

  42. Amin S, Robins RA, Maxwell-Armstrong CA, Scholefield JH, and Durrant LG, Vaccine-induced apoptosis: A novel clinical trial end point? Cancer Res, 2000; 60: 3132–3136.

    PubMed  CAS  Google Scholar 

  43. McMichael AJ and O’Callaghan CA, A new look at T cells. J Exp Med, 1998; 187: 1367–1371.

    Article  PubMed  CAS  Google Scholar 

  44. Dunbar PR, Ogg GS, Chen J, Rust N, vanderBruggen P, and Cerundolo V, Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Current Biology, 1998; 8: 413–416.

    Article  PubMed  CAS  Google Scholar 

  45. Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, and Picker LJ, Determination of antigen-specific: Memory/effector CD4+ T cell frequencies by flow cytometry–Evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest, 1997; 99: 1739–1750.

    Article  PubMed  CAS  Google Scholar 

  46. Kern F, Surel IP, Brock C, Freistedt B, Radtke H, Scheffold A, Blasczyk R, Reinke P, SchneiderMergener J, Radbruch A, Walden P, and Volk H-D, T-cell epitope mapping by flow cytometry. Nature Medicine, 1998; 4: 975–978.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Durrant, L.G., Spendlove, I., Robins, R.A. (2001). Anti-idiotypic vaccination. In: Robins, R.A., Rees, R.C. (eds) Cancer Immunology. Immunology and Medicine Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0963-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0963-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5714-3

  • Online ISBN: 978-94-017-0963-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics