Skip to main content

Molecular Markers as a Tool for Analyses of Genetic Relatedness and Selection in Ornamentals

  • Chapter
Breeding For Ornamentals: Classical and Molecular Approaches

Abstract

The analysis of genetic diversity among populations, between individuals and varieties, and even between species has been a major task in modern plant breeding (Allard, 1988). However, during the past two decades, selection methods based mainly on the analysis of morphological and physiological parameters have been increasingly complemented, and to some extent replaced by the so-called “molecular markers”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.P. and Demeke, T. (1993) Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs), Taxon 42, 553–571.

    Article  Google Scholar 

  • Alcala, J., Giovannoni, J.J., Pike, L.M., and Reddy, A.S. (1997) Application of genetic bit analysis (GBATM) for allelic selection in plant breeding, Mol. Breed. 3, 495–502.

    Article  CAS  Google Scholar 

  • Allard, R.W. (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors, J. Hered. 79, 225–238.

    PubMed  CAS  Google Scholar 

  • Alonso-Blanco, C., Peters, A.J.M., Komeef, M., Lister, C., Dean, C., van den Bosch, N., Pot, J., and Kuiper, M.T.R. (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population, Plant J. 14, 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Anastassopoulos, E. and Keil, M. (1996) Assessment of natural and induced genetic variation in Alstroemeria using random amplified polymorphic DNA (RAPD) markers, Euphytica 90, 235–244.

    Article  CAS  Google Scholar 

  • Ants, P. (2000) Molecular markers for ornamental breeding, Acta Hort. 508, 91–98.

    Google Scholar 

  • Avise, J. C. (1994) Molecular markers, natural history and evolution, Chapman and Hall, NY, London. Barcaccia, G., Albertini, E., and Falcinelli, M. (1999) AFLP fingerprinting in Pelargonium peltatum: Its development and potential in cultivar identification, J. Hort. Sci. Biotech. 74, 243–250.

    Google Scholar 

  • Becher, S.A., Steinmetz, K., Weising, K, Boury, S., Peltier, D., Renou, J.-P., Kahl, G., and Wolff, K. (2000) Microsatellites for cultivar identification in Pelargonium, Theor. Appl. Genet. 101, 643–651.

    Article  CAS  Google Scholar 

  • Ben-Meir, H.and Vainstein, A (1994) Assessment of genetic relatedness in roses by DNA fingerprint analysis, Sci Hortic 58, 158–164.

    Google Scholar 

  • Bennetzen, J.L. (1998) The structure and evolution of angiospenn nuclear genomes, Curr. Opin. Plant Biol. 1, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, G. and Debener, T. (2001) Molecular systematics of the Genus Dahlia as revealed by AFLP and cp RFLP markers, submitted.

    Google Scholar 

  • Botstein, D., White, R.L., Skolnick, M., Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32, 314–331.

    PubMed  CAS  Google Scholar 

  • Beyerman, B., Nürnberg, P., Weihe, A, Meixner, M., Epplen, J.T., and Bömer, T. (1992) Fingerprinting genomes with oligonucleotide probes specific for simple repetitive DNA sequences, Theor. Appl. Genet. 83, 691–694.

    Article  Google Scholar 

  • Caetano-Anolles, G. (1994) MAAP: a versatile and universal tool for genome analysis, Plant Mol. Biol. 25, 1011–1026

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles, G., Bassam, B.J., and Gresshof P M. (1991) DNA fmgerprinting using very short arbitrary oligonucleotides, Bio/Technology 9, 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Cerny, T.A, Caetano-Anollés, G., Trigiano, R.N., and Starman, T.W. (1996) Molecular phylogeny and DNA amplification fingerprinting ofPetunia taxa, Theor. Appl. Genet. 92, 1009–1016.

    Article  CAS  Google Scholar 

  • Chamberlain, D. and Hyam, R. (1998) The genus Rhododendron: a case study to test the value of various molecular techniques as measure of biodiversity, in A. Karp, P.G. Isaac, and D.S Ingram (eds.), Molecular Tools for Screening Biodiversity, Chapman and Hall, London.

    Google Scholar 

  • Cnops, G., den Boer, B., Gerais, A, van Montagu, M., and van Lijsbetten, M. (1996) Chromosome landing at the Arabidopsis Tornado 1 locus using an AFLP-based strategy, Mol. Gen. Genet. 253, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Cram, P.F. and McCloskey, J.A. (1998) Applications of mass spectrometry to the characterisation of oligonucleotides and nucleic acids, Curr.Opin. Biotechnol. 9, 25–34.

    Article  Google Scholar 

  • Debater, T. and Mattiesch. L. (1998) Effective pairwise combination of long primers for RAPD analyses in roses, Plant Breeding 117, 147–151.

    Article  Google Scholar 

  • Debener, T. and Mattiesch, L. (1999) Construction of a genetic linkage map of roses using RAPD and AFLP markers, Theor. Appl. Genet. 99, 891–899.

    Article  CAS  Google Scholar 

  • Debener, T., Bartels, C., and Mattiesch. L. (1996) RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species, Mol. Breed. 2, 321–327.

    Article  CAS  Google Scholar 

  • Debener, T., Janakiram, T., and Mattiesch, L. (2000). Sports and seedlings of rose varieties analyzed with molecular markers, Plant Breeding 119, 71–74.

    Article  CAS  Google Scholar 

  • Debater, T., Mattiesch, L, and Vosman, B. (2001) A molecular marker map for roses, Acta Hort.,in press.

    Google Scholar 

  • DeRiek, J., Dendauw, J., Mertens, M., De Loose, M., Heursel, J., and Van Blockstaele, E. (1999) Validation of criteria for the selection of AFLP markers to assess the genetic variation of a breeders’ collection of evergreen azaleas, Theor. Appl. Genet. 99, 1155–1165.

    Article  Google Scholar 

  • Dunemann, F. and Kahnau, R. (1998) Genetische Fingerabdrücke zur molekularen Identifzierung und Verwandtschaftsanalyse bei Rhododendron, in Rhododendron und immergrüne Laubgehölze, Jahrbuch 1997, Deutsche Rhododendrongesellschaft, Bremen, pp. 8–20.

    Google Scholar 

  • Dunemann, F., Kahnau, R., and Stange, I. (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map, Theor. Appl. Genet. 98, 1146–1155.

    Article  CAS  Google Scholar 

  • Ellsworth, D.L., Rittenhouse, K.D., and Honeycutt, R.L. (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns, BioTechniques 14, 214–217.

    CAS  Google Scholar 

  • Facciali, P., Terzi, V., Pecdnioni, N., Berio, T., Giovannini, A., and Allavena, A. (2000) Genetic diversity in cultivated Osteospermum as revealed by random amplified polymorphic DNA analysis, Plant Breeding 119, 351–355.

    Article  Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability, Ann. Rev. Genet. 22, 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1995) PHYLIP (Phylogeny Inference Package) Version 3.57c, University of Washington.

    Google Scholar 

  • Fridman, E., Pleban, T., and Zamir, D. (2000) A recombination hotspot delimits a wild species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene, PNAS USA 97, 4718–4723.

    Google Scholar 

  • Gallego, F.J. and Martinez, I. (1996) Molecular typing of rose cultivars using RAPDs, J. Hort. Sci. 71, 901–908.

    CAS  Google Scholar 

  • Gebhardt, C. and Salamini, F. (1992) Restriction fragment length polymorphism analysis of plant genomes and its application to plant breeding, Intern. Rev. Cyt. 135, 201–237.

    Article  CAS  Google Scholar 

  • Gerats, T., DeKeukeleire, P., Deblaere, R., van Montagu, M., and Zethof, J. (1995) Amplified fragment length polymorphism (AFLP) mapping in Petunia, a fast and reliable method for obtaining a genetic map, Acta Hort. 420, 58–61.

    CAS  Google Scholar 

  • Goh, C.-J., Kumar, P.P., and Yau, J.C.K. (1995) Genetic variations detected with RAPD markers in Heliconia, Acta Hort. 420, 72–74.

    CAS  Google Scholar 

  • Grattapaglia, D. and Sederoff, R. (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross mapping strategy and RAPD markets, Genetics 137, 1121–1137.

    PubMed  CAS  Google Scholar 

  • Griffm, T.J. and Smith, L.M. (2000) Single nucleotide polymorphism analysis by MALDI-TOF mass spectrometry, Trends Biotechnol. 18, 77–84.

    Article  Google Scholar 

  • Gudin, S. (2000) Rose: genetics and breeding, Plant Breeding Reviews 17, 159–189.

    CAS  Google Scholar 

  • Han, T.H., van Eck, H.J., DeJeu, M.J., and Jacobsen, E. (1999) Optimisation of AFLP fmgerprinting of organisms with a large-sized genome: a study on Alstroemeria ssp, Theor. Appl. Genet. 98, 465–471.

    Article  Google Scholar 

  • Hoheisel, J.D. (1997) Oligomer-chip technology, Trends Biotechnol. 15, 465–469.

    Article  CAS  Google Scholar 

  • Hubbard, M., Kell, J., Rajapakse, S., Abbott, A., and Ballard, R. (1992) Restriction fragment length polymorphism in rose and their use for cultivar identification, HortScience 27, 172–173.

    Google Scholar 

  • Huff, D.R., Peakall, R., and Smouse, P.E. (1993) RAPD variation within and among natural populations of outerossing buffalograss [Buchloe dactyloides (Nutt.)Engelm], Theor. Appl. Genet. 86, 927–934.

    Article  CAS  Google Scholar 

  • Hunt, G.J. (1997) Construction of linkage maps with RAPD markers, in M.R. Micheli and R. Bova (eds.), Fingerprinting Methods Based on Arbitrarily Primed PCR, Springer, Berlin, Heidelberg

    Google Scholar 

  • Iqbal, M.J. and Raybum, AL. (1994) Stability of RAPD markers for determining cultivar specific DNA profiles in rye (Secale cereale), Euphytica 75, 215–220.

    Article  CAS  Google Scholar 

  • Jan, C.H., Byrne, D.H., Manhart, J., and Wilson, H. (1998) Rose germplasm analysis with RAPD markers, HortScience 34, 341–345.

    Google Scholar 

  • Jianhua, Z., McDonald, M.B., and Sweeney, P.M. (1997) Testing for genetic purity in Petunia and Cyclamen seed using random amplified polymorphic DNA markers, HortScience 32, 246–247.

    CAS  Google Scholar 

  • Jordan, W.C., Foley, K., and Bruford, M. (1998) Single-strand conformation polymorphism (SSCP) analysis, in A. Karp, P.G. Isaac, and D.S. Ingram (eds), Molecular Tools for Screening Biodiversity, Chapman and Hall, London.

    Google Scholar 

  • Karp, A., Isaac, P.G., and Ingram, D.S. (eds.) (1998) Molecular Tools for Screening Biodiversity,Chapman and Hall, London.

    Google Scholar 

  • Kaufmann, H. and Debener, T. (2000) Construction of a rose BAC-library, Plant and Animal Genome Conference VIII, Abstr. no 444.

    Google Scholar 

  • Kelly, J.D. and Miklas, P.N. (1998) The role of RAPD markers in breeding for disease resistance in common bean, Mol. Breed. 4, 1–11.

    Article  CAS  Google Scholar 

  • Ko, H.L., Henry, R.J., Beal, P.R., Moisander, J.A., and Fisher, K.A. (1996) Distinction of Ozothamnus diosmifolius (Vent.) DC genotypes using RAPD, HortScience 31, 858–861.

    CAS  Google Scholar 

  • Ko, M.K., Yang, J., Jin, Y.H., Lee, C.H., and Oh, B.J. (1998) Genetic relationships of Viola species evaluated by random amplified polymorphic DNA analysis, J. Hort.Sci. Biotech. 73, 601–605.

    CAS  Google Scholar 

  • Konieczyn, A. and Ausubel, F.M. (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers, Plant J. 4, 403–410.

    Article  Google Scholar 

  • Ku, H.M., Vision, T., Liu, J., and Tanksley, S.D. (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large scale duplication followed by selective gene loss creates a network of synteny, PNAS USA 97, 9121–9126.

    Google Scholar 

  • Kumar, P.P., Yau, J.C.K., and Goh, C.J. (1998) Genetic analysis of Heliconia species and cultivars with randomly amplified polymorphic DNA (RAPD) markers, J. Amer. Soc. Hort. Sci. 123, 91–97.

    CAS  Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Bearlow, A. Daly, M.J., Lincoln, S.E., and Newbury, L (1987) Mapmaker: an interactive computer package for constricting primary linkage maps of experimental and natural populations, Genomics 1, 174–181.

    CAS  Google Scholar 

  • Lawson, D.M., Lunde, C.F., and Mutscliler, M.A. (1997) Marker assisted transfer of acylsugar-mediated pest resistance from the wild tomato Lycopersicon pennelii, to the cultivated tomato, Lycopersicon esculentum, Mol. Breed. 3, 307–317.

    Article  CAS  Google Scholar 

  • Le Duc, A., Adams, R.P., and Thong, M. (1999) Using random amplification of polymorphic DNA for a taxonomic reevaluation ofpfizers junipers, HortScience. 34, 1123–1125.

    Google Scholar 

  • Lesur, C. Boury, S., Weising, K., Kahl, G., Wolff, K., Becher, S.A., and Peltier, D. (2000) Comparison of seven molecular techniques for Pelargonium cultivar identification, Acta Hort. 508, 297–301.

    CAS  Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.-I. et al. (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana, Nature 402, 761–768.

    Article  PubMed  CAS  Google Scholar 

  • Ling, J-T., Sauve, R., and Gawel, N. (1997) Identification of Poinsettia cultivais using RFLP markers. HortScience, 32, 122–124.

    Google Scholar 

  • Loh, J.P., Kiew, R., Keet, A., Gan, L.H., and Gan, Y.Y. (1999) Amplified fragment length polymorphism (AFLP) provides molecular markers for the identification of Caladium bicolor cultivais, Ann. Bot. 84, 155–161.

    Article  CAS  Google Scholar 

  • Löscher, U. (1992) DUS testing of Pelargonium varieties, Plant Var. Seeds 5, 201–207.

    Google Scholar 

  • Malek, B.V. and Debener T. (2000). Identification of molecular markers linked to Rdrl,a gene conferring resistance to blackspot in roses, Theor. Appl. Genet.,in press.

    Google Scholar 

  • Marsolais, J.V., Pringle, J.S., and White, B.N. (1993) Assessment of random amplified polymorphic DNA (RAPD) as genetic markers for determining the origin of úrterspecific lilac hybrids, Taxon 42, 531–537.

    Article  Google Scholar 

  • Matsumoto, S. and Fukuri, H. (1996) Identification of Rosa cultivais and clonal plants by random amplified polymorphic DNA, Sci. Hort. 67, 49–54.

    Article  CAS  Google Scholar 

  • McLean, M., Gerats, A.G.M., Baird, W.V., and Meagher, R.B. (1990) Six actin gene subfamilies map to five chromosomes of Petunia hybrida, J. Heredity 81, 341–346.

    CAS  Google Scholar 

  • Michelmore, R.W., Parais, I., and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations, PNAS USA 88, 9828–9832.

    Google Scholar 

  • Milian, F., Osuma, F., Cobos, S., Torres, A., and Cubero J.I. (1996) Using RAPDs to study phylogenetic relationships in Rosa, Theor. Appl. Genet. 92, 273–277.

    Article  Google Scholar 

  • Mohan, M., Nair, S., Bhagwat, A., Krishna, T G., Yano, M., Bhatia, C.R., and Sasaki, T. (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants, Mol. Breed. 3, 87–103.

    Article  CAS  Google Scholar 

  • Morgante, M. and Oliveri, A.M. (1993) PCR-amplified microsatellites as markers in plant genetics, Plant J. 3, 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Naito, K., Isagi, Y., Kameyama, Y., and Nakagoshi, N. (1999) Population structures in Rhododendron metternichi var. hondoense assessed with microsatellites and their implication for conservation, J. Plant Res. 112, 405–412.

    Article  Google Scholar 

  • Nei, M. (1987) MolecularEvolutionary Genetics, Columbia University Press, NY.

    Google Scholar 

  • Obara-Okeyo, P. and Kako, S. (1998) Genetic diversity and identification of Cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers, Euphytica 99, 95–101.

    Article  CAS  Google Scholar 

  • Ordon, F., Wenzel, W., and Friedt, W. (1998) Molecular markers for resistance genes in major grain crops, Progress in Botany 59, 49–79.

    Article  CAS  Google Scholar 

  • Paran, I. and Michelmore, R. W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce, Theor. Appl. Genet. 85, 985–993.

    Article  CAS  Google Scholar 

  • Paterson, A.H., Tanksley, S.D., and Sorrels, M.E. (1991) DNA markers in plant improvement, Adv. Agron. 46, 39–90.

    Article  CAS  Google Scholar 

  • Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X, Elsik, C.G., Jiang, C.X., Katsar, C.S., Lan, T.H., Lin, Y.R., Ming, R., and Wright, R.J. (2000) Comparative genomics of plant chromosomes, Plant Cell 12, 2187–2193.

    Google Scholar 

  • Peltier, D. Farcy, E., Dulieu, H., and Bervillé (1994) Origin, distribution and mapping of RAPD markers from wild Petunia species in Petunia hybrida Hort lines, Theor. Appl. Genet. 88, 637–645.

    CAS  Google Scholar 

  • Rafalski, J.A. and Tingey, S.V. (1993) Genetic diagnostics in plant breeding: RAPDs microsatellites and machines, Trend. Genet. 9, 275–280.

    Article  CAS  Google Scholar 

  • Rajapakse, S., Hubbard, M., Kelly, J.W., Abbott, A.G., and Ballard, R.E. (1992) Identification of rose cultivars by restriction fragment length polymorphism, Sci. Hort. 52, 237–245.

    Article  CAS  Google Scholar 

  • Renou, J.P., Aubry, C., Serveau, M., and Jalouzot, P. (1997) Evaluation of the genetic variability in the genus Perlargonium using RAPD markers, J. Hort. Sci. 72, 229–237.

    Google Scholar 

  • Rohlf, F.J. (1989)NTSYS PC Numerical Taxonomy and Multivariate Analysis System,Exeter Publishers, NY.

    Google Scholar 

  • Saitou, N. and Nei, M. (1987) The neighbour joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Schafer, A.J. and Hawkins, J.R. (1998) DNA variation and the figure of human genetics, Nature Biotechnology 16, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M.C., Caetano-Anollés, G., and Trigiano, R.N. (1996) DNA amplification fingerprinting identifies closely related Chrysanthemum cultivars, J. Amer. Soc. Hort. Sci. 121, 1043–1048.

    CAS  Google Scholar 

  • Scovel, G., Ben-Meir, H., Ovadis, M., Itzhakí, H., and Vainstein, A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type, Theor. Appl. Genet. 96, 117–122.

    Article  CAS  Google Scholar 

  • Stam, P., Van Ooijen, J.W. (1995) JoinMap version 2.0: Software for the calculation of genetic linkage maps, CPRO-DLO, Wageningen.

    Google Scholar 

  • Starman, T.W. and Abbit, S. (1997) Evaluating genetic relationships of Geranium using arbitrary signatures from amplification profiles, HortScience 32, 1288–1291.

    CAS  Google Scholar 

  • Starman, T.W., Duan, X., and Abbit, S. (1999) Nucleic acid scanning techniques distinguish closely related cultivars of Poinsettia, HortScience 34, 119–1122.

    Google Scholar 

  • Staub, J.E., Serquen, F.C., and Gupta, M. (1996) Genetic markers, map construction, and their application in plant breeding, HortScience 31, 729–741.

    CAS  Google Scholar 

  • Südbeck, H. and Debener, T. (2001) Genetic diversity within Dahlia cultivars as revealed by AFLP markers, in preparation.

    Google Scholar 

  • Swoboda, I. and Balla. P.L. (1997) RAPD analysis of genetic variation in the Australian fan flower, Scaevola, Genome 40, 600–606.

    Article  PubMed  CAS  Google Scholar 

  • Torres, AM., Millan, T., and Cubero, J.T. (1993) Identifying rose cultivars using random amplified polymorphic DNA markers, HortScience 28, 333–334.

    CAS  Google Scholar 

  • Trigiano, R.N., Scott, M.C., and Caetano-Anolles, G. (1998) Genetic signatures from amplification profiles characterise DNA mutation in somatic and radiation induced sports of chrysanthemum, J. Am. Soc. Hort Sci. 123, 642–646.

    CAS  Google Scholar 

  • Tyagi, S. and Kramer, R. (1996) Molecular beacons: probes that fluoresce upon hybridisation, Nature Biotechnology 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Tzuri, G., Hillel, J., Lavi, V., Haberfeld, A, and Vainstein, A (1991) DNA fingerprint analysis of ornamental plants, Plant Science 76, 91–97.

    Article  CAS  Google Scholar 

  • Vainstein, A and Ben-Meir, H. (1994) DNA fingerprint analysis of roses, J. Amer.Soc. Hort.Sci. 119, 1099–1103.

    CAS  Google Scholar 

  • Vainstein, A, Híllel, J., Lavi, U., and Tzuri, G. (1991) Assessment of genetic relatedness in carnation by DNA fingerprint analysis, Euphytica 56, 225–229.

    Article  Google Scholar 

  • Vainstein, A., Ben-Meir, H., and Zucker, A (1993) DNA fingerprinting as a reliable tool for the identification and genetic analysis of ornamentals, Proceedings of the XVIIth Eucarpia Symposium “Creating Genetic Variation in Ornamentals, pp. 63–68.

    Google Scholar 

  • van der Meulen-Muisers, J.J.M., van Oeveren, J.C., Sandbrink, J.M., and van Tuyl, J.M. (1995) Molecular markers as a tool for breeding for flower longevity in Asiatic hybrid lilies, Acta Hort. 420, 68–71.

    Google Scholar 

  • Visscher, P.M., Haley, C.S., and Thompson, R. (1996) Marker-assisted introgression in backcross breeding programs, Genetics 144, 1923–1932.

    PubMed  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Homes, M., Frijters, A, Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting, Nucl. Acids Res. 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Weber, J.L., Thong, G., and Tanksley S.D. (1994) Survey of plant short tandem DNA repeats, Theor. Appl. Genet. 88, 1–6.

    CAS  Google Scholar 

  • Weeden, N.F., Timmermann, G.M., Hemmat, M., Kneen, B.E., and Lohdi, M.A. (1992) Inheritance and reliability of RAPD markers, Proc. Symp. Applications of RAPD Technology to Plant Breeding, Minneapolis, MN, pp. 12–17.

    Google Scholar 

  • Weising, K. and Gardner R.C. (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms, Genome 42, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Weising, K., Nybom, H., Wolff, K., and Meyer, W. (1995) DNA Fingerprinting in Plants and Fungi, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Weising, K., Winter, P., Hütte!, B., and Kahl, G. (1998) Microsatellite markers for molecular breeding, Journal of Crop Production 1, 113–143.

    Article  CAS  Google Scholar 

  • Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers, Nucl. Acids Res. 18, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, J. and McClelland, M. (1991) Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers, Nucl. Acids Res. 19, 5275–5279.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.G.K., Kubelik, AR., Livak, K.J., Rafalski, J.A., and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, K. (1996) RAPD analysis of sporting and chimerism in chrysanthemum, Euphytica 89, 159–164

    Article  CAS  Google Scholar 

  • Wolff, K. and Peters-Van Rijn, J. (1993) Rapid detection of genetic variability in chrysanthemum (Dendrathema grandiflora Tzveleo) using random primers, Heredity 71, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, K., Schoen, E.D., and Peters-Van Rijn, J. (1993) Optimising the generation of random amplified polymorphic DNA in chrysanthemum, Theor. Appl. Genet. 86, 1033–1037.

    Article  CAS  Google Scholar 

  • Wolff, K., Zietkiewitz, and Hofstra, H. (1995) Identification of duysanthemum cultivars and stability of DNA fingerprint patterns, Theor. Appl. Gene. 91, 439–447.

    CAS  Google Scholar 

  • Yamagishi, M. (1995) Detection of section-specific random amplified polymorphic DNA (RAPD) markers in Lilium, Theor. Appl. Genet. 91, 830–835.

    Article  CAS  Google Scholar 

  • Yu, K and Pauls, K.P. (1993) Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples, Theor. Appl. Genet. 86, 788–794

    CAS  Google Scholar 

  • Zhang, D., Dirr, M.A., and Price, R.A. (2000a) Discrimination and genetic diversity of Cephalotaxus accessions using AFLP markers, J. Amer. Soc. Hort, Sci. 125, 404–412.

    CAS  Google Scholar 

  • Zhang, D., Germain, E., Reynders-Aloisi, S., and Gandelin, M.H. (2000b) Development of amplified fragment length polymorphism markers for variety identification in rose, Ada Hort. 508, 113–120.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Debener, T. (2002). Molecular Markers as a Tool for Analyses of Genetic Relatedness and Selection in Ornamentals. In: Vainstein, A. (eds) Breeding For Ornamentals: Classical and Molecular Approaches. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0956-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0956-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5975-8

  • Online ISBN: 978-94-017-0956-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics