Skip to main content

Abstract

Flowers of many plants attract pollinators by producing and emitting volatile compounds. The scent emitted by such flowers is typically a complex mixture of low-molecular-mass compounds (100–200 Da) which gives the flower its unique, characteristic fragrance. The chemical composition of flower fragrances varies widely among species in terms of the number, identity, and relative amounts of constituent volatile compounds (Knudsen and Tollsten, 1993; Knudsen et al.,1993). Such species-specific floral odors can enhance pollinator specificity, which in turn can reduce the chance of pollen loss and inappropriate interspecific pollination. Moreover, closely related plant species that rely on different types of insects for pollination produce different odors, reflecting the olfactory sensitivities or preferences of the pollinators (Henderson, 1986; Raguso and Pichersky, 1995). Characteristic floral odors are correlated with the type of pollinators. Species pollinated by bees and flies have sweet scents, whereas those pollinated by beetles have strong musty, spicy, or fruity odors (Dobson, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohlmann, J., Meyer-Gauen, G., and Croteau, R. (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis, PNAS USA 95, 4126–4133.

    CAS  Google Scholar 

  • Croteau, R. and Karp, F. (1991) Origin of natural odorants, in P. Muller and D. Lamparsky (eds.), Perfume: Art, Science and Technology, Elsevier Appl. Sci. Inc., NY, pp. 101–126.

    Google Scholar 

  • Cseke, L., Dudareva, N., and Pichersky, E. (1998) Structure and evolution of the linalool synthase, Mol. Biol. Evol. 15, 1491–1498.

    Article  CAS  Google Scholar 

  • Curry, K.J. (1987) Initiation of terpenoid synthesis in osmophores of Stanhopea anfracta (Orichadaceae): a cytochemic study, Amer. J. Bot. 74, 1332–1338.

    Article  CAS  Google Scholar 

  • Dobson, H.E.M. (1994) Floral volatiles in insect biology, in E. Bernays (ed.), Insect-Plant Interactions, CRC Press, Boca Raton, FL, vol.V, pp. 47–81.

    Google Scholar 

  • Dobson, H.E.M., Bergstrom, G., and Groth, I. (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae), Isr. J. Bot. 39, 143–156.

    CAS  Google Scholar 

  • Dobson, H.E.M., Groth, L, and Bergstrom, G. (1996) Pollen advertisement: chemical contrasts between whole-flower and pollen odors, Amer. J. Bot 83, 877–885.

    Article  CAS  Google Scholar 

  • Dudareva, N. and Pichersky, E. (2000) Biochemical and molecular genetic aspects of floral scents, Plant Physiol. 122, 627–633.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E. (1996) Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower, Plant Cell 8, 1137–1148.

    PubMed  CAS  Google Scholar 

  • Dudareva, N., D’Auria, J.C., Nam, K.H., Raguso, R.A., and Pichersky, E. (1998a). Acetyl CoA: benzylaicohol acetyltransferase–an enzyme involved in floral scent production in Clarkia breweri, Plant J. 14, 297304.

    Google Scholar 

  • Dudareva, N., Raguso, R.A., Wang, J., Ross, J.R, and Pichersky, E. (1998b) Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters, Plant Physiol. 116, 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., Piechulla, B., and Pichersky, E. (1999) Biogenesis of floral scent, Hortic. Rev. 24, 31–54.

    Google Scholar 

  • Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., and Wood, K. (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, Plant Cell 12, 949-961.

    Google Scholar 

  • Fanner, E.E. and Rayan, C.A. (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves, PNAS. USA 87, 7713–7716.

    Google Scholar 

  • Gershenzon, J. and Croteau, R (1991) Terpenoids, in G.A. Rosenthal and M. Berenbaum (eds.), Herbivores: Their Interaction With Secondary Metabolites, Academic Press, NY, pp. 165–219.

    Chapter  Google Scholar 

  • Heidmann, I., Efremova, N., Saedler, H., and Schwarz-Sommer, Z. (1998) A protocol for transformation and regeneration of Antirrhinum majus, The Plant J. 13, 723–728.

    Article  Google Scholar 

  • Henderson, A. (1986) A review of pollination studies in the Palmae, Bot. Rev. 52, 221–259.

    Article  Google Scholar 

  • Hrazdina, G. and Jensen, R.A. (1992) Spatial organization of enzymes in plant metabolic pathways, Ann. Rev. Plant Physiol. Plant Mol. Biot. 43, 241–267.

    Article  CAS  Google Scholar 

  • Jones, K.N., Reithel, J.S., and Irvin, R.E. (1998) A trade-off between the frequency and duration of bumblebee visits to flowers, Oecologia 117, 161–168.

    Article  Google Scholar 

  • Knudsen, J.T. and Tollsten, L. (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa, Bot. J. Linn. Soc. 113, 263–284.

    Article  Google Scholar 

  • Knudsen, J.T., Tollsten, L., and Bergstrom, G. (1993) Floral scents–a checklist of volatile compounds isolated by head-space techniques, Phytochemistry 33, 253–280.

    Article  CAS  Google Scholar 

  • Kolosova, N., Sherman, D.M., Karlson, D.T., and Dudareva, N. (2001) Cellular and subcellular localization of BAMT, the enzyme responsible for methylbenzoate biosynthesis in snapdragon flowers, Plant Physiol. 126, 956–964.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K., Rohmer, M., and Schwender, J. (1997) Two independent biochemical pathways for isopentenyldiphosphate and isoprenoid biosynthesis in higher plants, Physiol. Plant. 101, 643–652.

    Article  CAS  Google Scholar 

  • Mactavish, H.S. and Menary, R.C. (1997) Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma (Nees), Ann. Bot. 80, 305–311.

    Article  CAS  Google Scholar 

  • McCaskill, D. and Croteau, R. (1995) Isoprenoid synthesis in peppermint (Mentha x piperita): Development of a model system for measuring flux of intermediates through the mevalonic acid pathway in plants, Biochem. Soc. Transactions 23, 290S.

    CAS  Google Scholar 

  • McGarvey, D.J. and Croteau, R. (1995) Terpenoid metabolism, Plant Cell 7, 1015–1026.

    PubMed  CAS  Google Scholar 

  • Murfitt, L.M., Kolosova, N., Mann, C.J., and Dudareva, N. (2000) Purification and characterization of Sadenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus, Arch. Biochem. Biophys. 382, 145151.

    Google Scholar 

  • Pare, P.W. and Tumlinson, J.H. (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants, Plant Physiol. 114, 1161–1167.

    CAS  Google Scholar 

  • Pellmyr, O., Bergstrom, G., and Groth, I. (1987) Floral fragrances in Acteae, using differential chromatograms to discern between floral and vegetative volatiles, Phytochemistry 26, 1603–1606.

    Article  CAS  Google Scholar 

  • Pichersky, E., Raguso, R.A., Lewinsohn, E., and Croteau, R. (1994) Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity, Plant Physiol. 106, 1533–1540.

    PubMed  CAS  Google Scholar 

  • Pichersky, E., Lewinsohn, E., and Croteau, R. (1995) Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri, Arch. Biochem. Biophys. 316, 803–807.

    Article  PubMed  CAS  Google Scholar 

  • Raguso, R.A. and Pichersky, E. (1995) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination, Plant Syst. Evol. 194, 55–67.

    Article  CAS  Google Scholar 

  • Ross, J.R., Nam, K.H., D’Auria, J.C., and Pichersky, E. (1999) S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases, Arch. Biochem. Bioiphys. 367, 9–16.

    Article  CAS  Google Scholar 

  • Seskar, M., Shulaev, V., and Raskin, I. (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants, Plant Physiol. 116, 387–392.

    Article  CAS  Google Scholar 

  • Shulaev, V., Silverman, P., and Raskin, I. (1997) Airborne signalling by methyl salicylate in plant pathogen resistance, Nature 385, 718–721.

    Article  CAS  Google Scholar 

  • Stern, W., Curry, K., and Whitten, W.M. (1986) Staining fragrance glands in orchid flowers, Bui. Torrey Bot. Club 113, 288–297.

    Article  Google Scholar 

  • St-Pierre, B., Laflamme, P., Alarco, A.M., and De Luca, V. (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer, Plant J. 14, 703: 713.

    Google Scholar 

  • Van Dort, H., Jaegers, P., Ter Heide, R., and Van der Weerdt, A. (1993) Narcissus trevithian and N. geranium: analysis and synthesis of compounds, J. Agr. Food Chem. 41, 2063–2075.

    Google Scholar 

  • Wang, J. and Pichersky, E. (1998) Characterization of S-adenosyl-L-methionine: (iso)eugenol Omethyltransferase involed in floral scent production in Clarkia breweri, Arch. Biochem. Biophys. 349, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. and Pichersky, E. (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases, Arch. Biochem. Biophys. 368, 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Dudareva, N., Bhakta, S., Raguso, R.A., and Pichersky, E. (1997) Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme S-adenosyl-L-methionine: (iso)eugenol 0-methyltransferase and phenylpropanoid emission, Plant Physiol. 114, 213–221

    Google Scholar 

  • Watanabe, N., Watanabe, S., Nakajima, R., Moon, J.H., Shimokihira, K., Inagaki, J., Etoh, H., Asai, T., Sakata, K., and Ina, K. (1993) Formation of flower fragrance compounds from their precursors by enzymic action during flower opening, Biosci. Biotech. Biochem. 57, 1101–1106.

    Article  CAS  Google Scholar 

  • Zuker, A., Tzfira, T., and Vainstein, A. (1998) Genetic engineering for cut-flower improvement, Biotechnol. Adv. 16, 33–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dudareva, N. (2002). Molecular Control of Floral Fragrance. In: Vainstein, A. (eds) Breeding For Ornamentals: Classical and Molecular Approaches. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0956-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0956-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5975-8

  • Online ISBN: 978-94-017-0956-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics