Skip to main content

Molecular Control of Flower Development

  • Chapter

Abstract

The last decade has been an exciting period in plant molecular biology in general and in molecular studies of flower development in particular. The isolation of the first floral meristem identity and floral homeotic genes of Arabidopsis in the late 1980s—early ‘80s opened the way to in-depth studies of molecular aspects of floral development (Bowman et al., 1989; Coen et al., 1990; Sommer et al., 1990; Yanofsky et al., 1990). These investigations have led to insights into inflorescence and flower development in higher eudicotyledonous flowering plants, using mainly the predominant model of Arabidopsis thaliana (thale cress). The abundance of mutants, a relatively small genome, and easy transformation procedures have made this small plant a primary tool of modern plant biology. Among the ornamentals, Antirrhinum majus (snapdragon) and Petunia hybrida (petunia) are the best-characterized plants at the molecular level. As far as is known, flower development in these species follows genetic principles and mechanisms similar to those in Arabidopsis, although some differences exist in the details at the molecular level, and will be discussed later.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, J., Guli, C.L., Yu, X.H., and Smyth, D.R. (1992) TERMINAL FLOWER—a gene affecting inflorescence development in Arabidopsis thaliana, Plant J. 2, 103–116.

    Google Scholar 

  • Angenent, G.C. and Colombo, L. (1996) Molecular control of ovule development, Trends Plant Sci. 1, 228–232.

    Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J. (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers, Plant Cell 4, 983–993.

    PubMed  CAS  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Colombo, L., and van Tunen, A.J. (1993) Petal and stamen formation in petunia is regulated by the homeotic gene ibpl, Plant J. 4, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J. (1994) Co-supression of the petunia homeotic gene fbp2 affects the identity of the generative meristem, Plant J. 5, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J. (1995) Function interaction between the homeotic genes fbpl and pMADSI during petunia floral organogenesis, Plant Cell 7, 507–516.

    PubMed  CAS  Google Scholar 

  • Becker, A., Winter, K.U., Meyer, B., Saedler, H., and Theissen, G. (2000) MADS-box gene diversity in seed plants 300 million years ago, Mol. Biol. Evol. 17, 1425–1434.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva, R.G. (1995) Genetic-study of double-flower mutation in plants with monocarpic shoot, Genetika 31, 674–677.

    Google Scholar 

  • Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter, Plant Cell 10, 791–800.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Smith, D.R., and Meyerowitz, E.M. (1989) Genes directing flower development in Arabidopsis, Plant Cell 1, 37–52.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Drews, G.N., and Meyerowitz, E.M. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development, Plant Cell 3, 749–758.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M., and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana byAPETALAI and interacting genes, Development 119, 721–743.

    CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum, Cell 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S., and Coen, E. (1996) Control of inflorescence architecture in Antirrhinum, Nature 379, 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., and Coen, E. (1997) Inflorescence commitment and architecture in Arabidopsis, Science 275, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Busch, M.A., Bomblies, K., and Weigel, D. (1999) Activation of a floral homeotic gene in Arabidopsis, Science 285, 585–587.

    Article  PubMed  CAS  Google Scholar 

  • Byzova, M.V., Franken, J., Aarts, M.G,M., de Almeida-Engler, J., Engler, G., Mariani, C., Campagne, M.M.V., and Angenent, G.C. (1999) Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development, Genes Dev. 13, 1002–1014.

    CAS  Google Scholar 

  • Carpenter, R.S. and Coen, E. S. (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus, Genes Dev. 4, 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development, Nature 353, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus, Cell 63, 1311–1322.

    Google Scholar 

  • Conner, J. and Liu, Z.C. (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development, PNAS USA 97, 12902–12907.

    Google Scholar 

  • Davies, B., Rosa, A.D., Eneva, T., Saedler, H., and Sommer, H. (1996) Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes, Plant J. 10, 663–677.

    Article  PubMed  CAS  Google Scholar 

  • Deyholos, M.K. and Sieburth, L.E. (2000) Separate whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second introns, Plant Celi 12, 1799–1810.

    CAS  Google Scholar 

  • Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product, Cell 65, 991–1002.

    Article  PubMed  CAS  Google Scholar 

  • Egea-Cortines, M., Saedler, H., and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus, EMBOJ. 18, 5370–5379.

    Article  CAS  Google Scholar 

  • Elliott, R.C., Betzner, AS., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P., and Smyth, D.R. (1996) AINTEGUMENTA,an gene of Arabidopsis with pleiotropic roles in ovule development APETALA2-like and floral organ growth, Plant Cella,155–168.

    Google Scholar 

  • Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALAI and CAULIFLOWER, Development 127, 725–734.

    PubMed  CAS  Google Scholar 

  • Gasser, C.S., Broadhvest, J., and Hauser, B.A. (1998) Genetic analysis of ovule development, Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 49, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., Coupland G. (1997) A polycombgroup gene regulates homeotic gene expression in Arabidopsis, Nature 386, 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes Dev. 8, 1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., Ferrandiz, C., Yanofsky, M.F., and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development, Development 125, 1509–1517.

    PubMed  CAS  Google Scholar 

  • Gutierrez-Cortines, M.E. and Davies, B. (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity, Trends Plant Sci. 5, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Hempel, F.D., Weigel, D., Mandel, MA, Ditta, G., Zambryski, P.C., Feldman, L.J., and Yanofsky, M.F. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis, Development 124, 3845–3853.

    PubMed  CAS  Google Scholar 

  • Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A., and Ellis, N. (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea, Curr. Biol. 7, 581–587.

    Article  CAS  Google Scholar 

  • Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals, Development 127, 2021–2030.

    PubMed  CAS  Google Scholar 

  • Huala, E. and Sussex I.M. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development, Plant Cell 4, 901–913.

    Google Scholar 

  • Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H., and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS- box gene squamosa in Antirrhinum majus, EMBOJ. 11, 1239–1249.

    CAS  Google Scholar 

  • Irish, V.F. and Sussex, I.M. (1990) Function of the APETALAI gene during Arabidopsis floral development, Plant Cell 2, 741–753.

    PubMed  CAS  Google Scholar 

  • Irish, V.F. and Yamamoto, Y.T. (1995) Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum, Plant Cell 7, 1635–1644.

    PubMed  CAS  Google Scholar 

  • Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens, Cell 68, 683–697.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.G. and An, G. (1997) Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family, Mol. Cells 7, 45–51.

    PubMed  CAS  Google Scholar 

  • Kang, H.-G., Noh, Y.-S., Chung, Y.-Y., Costa, M.A., An, K., and An, G. (1995) Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco, Plant Mol. Biol. 29, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Campagne, M.M.V., and Angenent, G.C. (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate, Plant Cell 10, 171–182.

    PubMed  CAS  Google Scholar 

  • Kempin, S.A., Mandel, M.A., and Yanofsky, M.F. (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG I, Plant Physiol. 103, 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  • Klucher, K.M., Chow, H., Reiser, L., and Rischer, R.L. (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2, Plant Cell 8, 137–153.

    PubMed  CAS  Google Scholar 

  • Kramer, E.M. and Irish, V.F. (1999) Evolution of genetic mechanisms controlling petal development, Nature 399, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Krizek, B.A., Prost, V., and Macias, A. (2000) AINTEGUMENTA promotes petal identity and acts as a negative regulator ofAGAMOUS, Plant Cell 12, 1357–1366.

    CAS  Google Scholar 

  • Kyozuka, J., Konishi, S., Nemoto, K., Izawa, T., and Shimamoto, K. (1998) Down-regulation of RFL, the FZO/LFYhomolog of rice, accompanied with panicle branch initiation, PNAS USA 95, 1979–1982.

    Google Scholar 

  • Lee, I., Wolfe, D.S., Nilsson, O., and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS, Curr. Biol. 7, 95–104.

    Article  PubMed  Google Scholar 

  • Lehmann, N.L. and Sattler, R. (1996) Staminate floral development in Begonia cucullata var hookeri and three double-flowering begonia cultivars, examples ofhomeosis, Can. J. Bot. 74, 1729–1741.

    Article  Google Scholar 

  • Levy, Y.Y. and Dean, C. (1998) The transition to flowering, Plant Cell 10, 1973–1989.

    PubMed  CAS  Google Scholar 

  • Liu, Z. and Meyerowitz, E.M. (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers, Development 121, 975–991.

    CAS  Google Scholar 

  • Ma, H., Yanofsky, M.F., and Meyerowitz, E.M. (1991) AGLI AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev. 5, 484–495.

    CAS  Google Scholar 

  • Maes, T., Van Montagu, M., and Gerais, T. (1999) The inflorescence architecture of Petunia hybrida is modified by the Arabidopsis thaliana Apt gene, Dev. Genet. 25, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. (1995) A gene triggering flower formation in Arabidopsis, Nature 377, 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia, Sex. Plant Reprod. 11, 22–28.

    Article  CAS  Google Scholar 

  • Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992a) Molecular characterization of the Arabidopsis floral homeotic gene APE TAL.41, Nature 360, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A., Bowman, J.L., Kempin, S.A., Ma, H., Meyerowitz, E.M., and Yanofsky, M.F. (1992b) Manipulation of flower structure in transgenic tobacco, Cell 71, 133–143.

    Article  PubMed  CAS  Google Scholar 

  • McComb, J.A., Newell, C., and Lullfitz, G. (1996) A double-flowered geraldton wax (Chamelaucium uncinatum Schauer) with an anomalous flower in the ovary, Hortscience 31, 283–284.

    Google Scholar 

  • McSteen, P., Laudencia-Chingcuanco, D., and Colasanti, J. (2000) A floret by any other name: control of meristem identity in maize, Trends Plant Sci. 5, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M., Bowman, J.L., Brockman, L.L., Drews, G.N., Jack, T., Sieburth, L.E., and Weigel, D. (1991) A genetic and molecular model for flower development in Arabidopsis thaliana, Development Suppl. 1, 157–167.

    CAS  Google Scholar 

  • Mizukami, Y. and Ma, H. (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS, Plant Cell 9, 393–408.

    PubMed  CAS  Google Scholar 

  • Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998) A genetic framework for floral patterning, Nature 395, 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature 405, 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli, L., Hareven, D., Rounsley, S.D., Yanofsky, M.F., and Lifschitz, E. (1994) Isolation of the tomato AGAMOUS gene TAGI and analysis of its homeotic role in transgenic plants, Plant Cell 6, 163–173.

    PubMed  CAS  Google Scholar 

  • Pouteau, S., Nicholls, D., Tooke, F., Coen, E., and Battey, N. (1998) Transcription pattern of a FIM homologue in Impatiens during floral development and reversion, Plant J. 14, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, O.J., Bradley, D.J., and Coen, E.S. (1999) Separation of shoot and floral identity in Arabidopsis, Development 126, 1109–1120.

    PubMed  CAS  Google Scholar 

  • Reeves, P.H. and Coupland, G. (2000) Response of plant development to environment: control of flowering by daylength and temperature, Curr. Opin. Plant. Bio1. 3, 37–42.

    Article  CAS  Google Scholar 

  • Reynolds, J. and Tampion, J. (1983) Double Flowers,Pembridge Press, London.

    Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. (1997) MADS domain proteins in plant development, Biol. Chem. 378, 1079–1101.

    PubMed  CAS  Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. (1998) The AP2/EREBP family of plant transcription factors, Biol. Chem. 379, 633–646.

    PubMed  CAS  Google Scholar 

  • Samach, A., Kohlami, S.E., Motte, P., Datla, R., and Haughn, G.W. (1997) Divergence of function and regulation of class B floral organ identity genes, Plant Cell 9, 559–570.

    PubMed  CAS  Google Scholar 

  • Schnitz, K. (1999) The molecular and genetic control of ovule development, Curr. Opin. Plant Biol. 2, 1317.

    Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus, Science 250, 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H. (1992) Characterization of theAntirrhinum floral homeotic MADS-box gene deficiensevidence for DNA-binding and autoregulation of its persistent expression throughout flower development, EMBO J. 11, 251–263.

    PubMed  CAS  Google Scholar 

  • Scovel, G., Ben-Meir, H., Ovadis, M., Itzhaki, H., and Vainstein, A. (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type, Theor. Appl. Genet. 96, 117–122.

    Article  CAS  Google Scholar 

  • Scutt, C.P., Oliveira, M., Gilmartin, P.M., and Negrutiu, I. (1999) Morphological and molecular analysis of a double-flowered mutant of the dioecious plant white campion showing both meristic and homeotic effects, Dev. Genet. 25, 267–279.

    PubMed  CAS  Google Scholar 

  • Sessions, A, Yanofsky, M.F., and Weigel, D. (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1, Science 289, 779–781.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, S. and Meeks-Wagner, D.R. (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development, Plant Cell 5, 877–892.

    Google Scholar 

  • Shu, G.P., Amaral, W., Hileman, L.C., and Baum, D.A. (2000) LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae), Am. J. Bot. 87, 634–641.

    PubMed  CAS  Google Scholar 

  • Sommer, H., Beltran, J.-P., Huijser, P., Pape, H., Lonnig, W.-E., Saedler, H., and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors, EMBO J. 9, 605–613.

    CAS  Google Scholar 

  • Souer, E., van der Krol, A, Kloos, D., Spelt, C., Bliek, M., Mol, J., and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development, Development 125, 733–742.

    PubMed  CAS  Google Scholar 

  • Theissen, G. and Saedler, H. (1999) The golden decade of molecular floral development (1990–1999): A cheerful obituary, Dev. Genet. 25, 181–193.

    PubMed  CAS  Google Scholar 

  • Theissen, G., Becker, A, Di Rosa, A, Kanno, A, Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000) A short history of MADS-box genes in plants, Plant Mol. Biol. 42, 115–149.

    Article  PubMed  CAS  Google Scholar 

  • Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig,W.-E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis, EMBO J. 11, 4693–4704.

    CAS  Google Scholar 

  • Tsuchimoto, S., van der Krol, AR., and Chua, N.-H. (1993) Ecotopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant, Plant Cell 5, 843–853.

    PubMed  CAS  Google Scholar 

  • Tsuchimoto, S., Mayama, T., van der Krol, A., and Ohtsubo E. (2000) The whorl-specific action of a petunia class B floral homeotic gene, Genes Cells 5, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Krol, AR., Brunelle, A., Tsuchimoto, S., and Chua, N.-H. (1993) Functional analysis of petunia floral homeotic MADS box gene pMADSI, Genes Dev. 7, 1214–1228.

    Article  PubMed  Google Scholar 

  • Tunen, A.J., Eikelboom, W., and Angenent, G.C. (1993) Floral organogenesis in Tulipa, Flowering News 16, 33–37.

    Google Scholar 

  • Wagner, D., Sablowski, W.M., and Meyerowitz, E.M. (1999) Transcriptional activation of APETALAI by LEAFY, Science 285, 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D. and Meyerowitz, E.M. (1993) Genetic hierarchy controlling flower development, in M. Bernfeld (ed.), Molecular Basis ofMorphogenesis, John Wiley and Sons, Inc., New York, pp. 91–105.

    Google Scholar 

  • Weigel, D. and Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes, Cell 78, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants, Nature 377, 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis, Cell 69, 843–859.

    CAS  Google Scholar 

  • Xue, Y. and Ingram, G. (1993) Divergence in the role of MADS box genes in the determination of floral organ identity, Bioessays 15, 691–693.

    Article  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldman, K.A., and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature 346, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Zainol, R., Stimart, D.P., and Evert, R.F. (1998) Anatomical analysis of double-flower morphogenesis in a Nicotiana alata mutant, J. Am. Soc. Hortic. Sci. 123, 967–972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vishnevetsky, M., Meyerowitz, E.M. (2002). Molecular Control of Flower Development. In: Vainstein, A. (eds) Breeding For Ornamentals: Classical and Molecular Approaches. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0956-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0956-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5975-8

  • Online ISBN: 978-94-017-0956-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics