Skip to main content

Brassinosteroid-Driven Modulation of Stem Elongation and Apical Dominance: Applications in Micropropagation

  • Chapter
Brassinosteroids

Abstract

In horticulture, inhibition of shoot branching during orchards establishment is highly desired to avoid stem break by wind while increased branching during crop production usually leads to increased yields. In forestry, reduced branching significantly improves wood quality, especially for pulp production. Thus, branching control is an important component on the establishment of productivity rates for crop and forestry species. Brassinosteroids (BRs) are natural polyhydroxy steroidal lactones and ketones with phytohormone action. These plant steroids are known to stimulate stem elongation and to control apical dominance as well. Our research efforts have been focused on the use of BRs to control stem elongation and apical dominance aiming to improve crop and forestry species productivity, and yield in in vitro-based plant propagation techniques. In this chapter we describe how BRs can be used to significantly improve microprogation techniques, more especifically for the marubakaido apple rootstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., Ikekawa, N., Ikeda, M., Sassa, T., Kitsuwa, T., Marumo, S. (1983). Occurrence of three new brassinosteroids: brassinone, (24S)-24-ethylbrassinone and 28-norbrassinolide in higher plants. Experientia 39: 351–353

    Article  CAS  Google Scholar 

  • Altmann, T. (1998). A tale of dwarfs and drugs: brassinosteroids to the rescue. Trends in Genetics 14: 490–495.

    Article  PubMed  CAS  Google Scholar 

  • Arteca, R. N. (1995). Brassinosteroids. In Plant hormones: Physiology, biochemistry and molecular biology, pp. 206–213. Eds P J Davies. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Arteca, R. N., Tsai, D. S., Mandava, N. B. (1991). The inhibition of brassinosteroid-induced ethylene biosynthesis in etiolated mung bean hypocotyl segments by 2,3,5-triiodobenzoic acid and 2-(pchlorophenoxy)-2-methylpropionic acid. J of Plant Physiology 139: 52–56

    Article  CAS  Google Scholar 

  • Azpiroz, R., Wu, Y., LoCascio, J. C., Feldmann, K. A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219–230.

    PubMed  CAS  Google Scholar 

  • Back, T., Janzen, L., Nakajima, S., Pharis, R. (1999). Synthesis and biological activity of 25-methoxy-, 25- fluoro-, and 25 azabrassinolide and 25-fluorocastasterone: surprising effects of heteroatm substituent at C-25. Journal of Organic Chemistry 64: 5494–5498.

    Article  PubMed  CAS  Google Scholar 

  • Bieberach, C., de León, B., Teme Centurión, O., Ramírez, J., Gros, E., Galagovsky, L. (2000). Estudios preliminares sobre el efecto de dos brassinosteroides sintéticos sobre el crecimiento in vitro de yuca, ñame y piña. Anales de la Asociación Quimica Argentina, 88:No1/2, 1–7.

    Google Scholar 

  • Brosa, C. (1999). Structure-activity relationship. In Brassinosteroids: Steroidal Plant Hormones, pp. 191–222. Eds A Sakurai, T Yokota and S D Clouse. Springer Verlag, Tokyo.

    Google Scholar 

  • Brosa, C., Capdevila, J. M., Zamora, I. (1996). Brassinosteroids: a new way to define the structural requirements. Tetrahedron 52: 2435–2448

    Article  CAS  Google Scholar 

  • Brosa, C., Nusimovich, S., Peracaula, R. (1994). Synthesis of new brassinosteroids with potential activity as antiecdysteroids. Steroids 59: 463–467

    Article  PubMed  CAS  Google Scholar 

  • Brosa, C., Soca, L., Terricabras, E., Ferrer, J., Alsina, A. (1998). New synthetic brassinosteroids: a 5a- hydroxy-6-ketone analog with strong plant growth promoting activity. Tetrahedron 54: 12337–48.

    Article  CAS  Google Scholar 

  • Brosa, C., Zamora, I., Terricabras, E., Soca, L., Peracaula, R., Rodriguez-Santamarta, C. (1997). Synthesis and molecular modelling: related approaches to the progress in brassinosteroid research. Lipids 32: 1341–1347.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S., Dilkes, B.P., Gregory, B.D., Ross, A.S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E., Feldmann, K.A. (1999a). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology 119: 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C.P., Gregory, B.D., Ross, A.S., Tanaka, A., Yoshida, S., Tax, F. E., Feldmann, K.A. (1999b). The Arabidopsis dwf7/ste1 mutant is defective in the Delta (7) sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207–221.

    PubMed  CAS  Google Scholar 

  • Chon, N. M., Nishikawa-Koseki, N., Hirata, Y., Saka, H., Abe, H. (2000). Effects of brassinolide on mesocotyl, coleoptile and leaf growth in rice seedlings. Plant Production Science 3: 360–365.

    Article  Google Scholar 

  • Chory, J. (2001). Light, brassinosteroids, and Arabidopsis development. Proceedings of the Symposium: Plant Physiology 2000 and Beyond: Breaking the Mold, Plant Biology 2001-ASPP, Providence, Rhode Island, Abstract 30005.

    Google Scholar 

  • Chory, J., Nagpal, P., Peto, C. A. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445–459.

    PubMed  CAS  Google Scholar 

  • Chory, J., Peto, C., Feinbaum, R., Pratt, L., Ausubel, F. (1989). Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999.

    Google Scholar 

  • Cleland, R. E (1995). In Plant hormones: Physiology, biochemistry and molecular biology, pp. 214–227. Eds P J Davies. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Clouse, S.D. (1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant Journal 10: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S.D. (2002). Brassinosteroid signal transduction: Clarifying the pathway from ligand perception to gene expression. Molecular Cell 10: 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S. D., Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology 49: 427–451.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S. D., Zurek, D. (1991). Molecular analysis of brassinolide action in plant growth and development. In Brassinosteroids: Chemistry, Bioactivity, and Applications, pp. 122–140. Eds H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Cosgrove, D. (1997). Relaxation in a high-stress environment: the molecular basis of extensible cell walls and enlargement. Plant Cell 9: 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, H. G., Yokota, T., Adam, G. (1991). Brassinosteroids: chemistry, bioactivity, and applications.pp. 358. American Chemical Society, Washington.

    Book  Google Scholar 

  • Dahse, I., Petzold, U., Willmer, C. M., Grimm, E. (1991). Brassinosteroid-induced changes of plasmalemma energization and transport and of assimilate uptake by plant-tissues. In Brassinosteroids: Chemistry, bioactivity, and applications, pp. 167–175. Eds H G Cutler, T Yokota and G Adam. American Chemical Society, Washington

    Google Scholar 

  • Dunitz, J., Taylor, R. (1997). Organic fluorine hardly ever accepts hydrogen bonds. Chemistry- A European Journal. 3: 89–98.

    Article  CAS  Google Scholar 

  • Evans, M. L. (1985). The action of auxin on plant cell elongation. Critical Review of Plant Sciences. 2: 317–365.

    Article  CAS  Google Scholar 

  • Filler, R., Kobayashi, Y., Yagupolskii, L. (1993). Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Elsevier, Amsterdam.

    Google Scholar 

  • Flores, R., Lessa, A. O., Peters, J. A., Fortes, G. R. L. (1999). Efeito da sacarose e do benomyl na multiplicação in vitro da macieira. Pesquisa Agropecuaria Brasilleira., 34: 2363–2368.

    Article  Google Scholar 

  • Friedrichsen, D.M., Joazeiro, C. A. P., Li, J., Hunter, T., Chory, J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123: 1247–1256.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka, S. (1999). Natural occurrence of brassinosteroids in the plant kingdom. In Brassinosteroids: Steroidal Plant Hormones, pp. 21–45. Eds A Sakurai, T Yokota and S D Clouse. Springer Verlag, Tokyo.

    Google Scholar 

  • Fujioka, S., Sakurai, A. (1997). Biosynthesis and metabolism of brassinosteroids. Physiology Plantarum 100: 710–715.

    Article  CAS  Google Scholar 

  • Galagovsky, L., Gros, E., Ramírez, A. (2001). Synthesis and bioactivity of natural and C-3 fluorinated biosynthetic precursors of 28-homobrassinolide. Phytochemistry 58: 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Gaudinova, A., Sussenbekova, H., Vojtechova, M., Kaminek, M., Eder, J., Kohout, L. (1995). Different effects of 2 brassinosteroids on growth, auxin and cytokinin content in tobacco callus-tissue. Plant Growth Regulation 17: 121–126

    Article  CAS  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D. Jr., Steffens, G. L., Flippen-Anderson, J. L., Cook, J. C. Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217.

    Article  CAS  Google Scholar 

  • Howard, J., Hoy, V., O’Hagan, D., Smith, G. (1996). How good is fluorine as a hydrogen bond acceptor? Tetrahedron 38: 12613–12622.

    Article  Google Scholar 

  • Hu, Y., Bao, F., Li, J. (2000). Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant Journal 24: 693–701.

    Article  PubMed  CAS  Google Scholar 

  • Jin, F., Xu, Y., Huang, W. (1993). 2,2 Difluoro enol silyl ethers: convenient preparation and application to the synthesis of a novel fluorinated brassinosteroid. Journal of the Chemical Society, Perkin Transactions 1: 795–799.

    Google Scholar 

  • Jiang, B., Ying, L., Zhou, W-S. (2000). Stereocontrolled synthesis of the 22E,240 (S) –trifluoromethyl steroidal side chain and its application to the synthesis of fluorinated analogues of naturally occurring sterols. Journal of Organic Chemistry 65: 2631–6236.

    Article  Google Scholar 

  • Joseph-Nathan, P., Espiñeira, J., Santillan, R. (1984). 19F-NMR study of fluorinated corticosteroids. Spectrochimica Acta 40A: 347–349.

    Google Scholar 

  • Kamuro, Y., Takatsuto, S. (1999). Practical applications of brassinosteroids in agricultural fields. In: Brassinosteroids: Steroidal Plant Hormones. pp. 223–241. Eds A Sakurai, T Yokota and S D Clouse. Springer Verlag, Tokyo.

    Google Scholar 

  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., Altmann, T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. Plant Journal 9: 701–713.

    Article  CAS  Google Scholar 

  • Khripach, V. A., Zhabinskii, V. N., de Groot, A. E. (1999a). Bioassays and structure-activity relationships of BS. In Brassinosteroids: A New Class of Plant Hormones, pp 301–324. Eds V A Khripach, V N Zhabinskii and A E de Groot. Academic Press, San Diego.

    Google Scholar 

  • Khripach, V. A., Zhabinskii, V. N., de Groot, A. E. (1999b). Physiological mode of action of BS. In Brassinosteroids: a New Class of Plant Hormones, pp 219–300. Eds V A Khripach, V N Zhabinskii, A E de Groot. Academic Press, San Diego.

    Google Scholar 

  • Kim, G –T., Tsukaya, H., Uchimiya, H. (1998). The Rotundifolia 3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes and Development, 12: 2381–2391.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Abe, H., Little, C., Pharis, R. (1990). Identification of two brassinosteroids from the cambial region of Scots pine (Pinus silvestris) by gas-chromatography-mass spectrometry, after detection using a dwarf lamina inclination bioassay. Plant Physiology 94: 1709–1713.

    Article  PubMed  CAS  Google Scholar 

  • Kishi, T., Wada, K., Marumo, S., Mori, K. (1986). Synthesis of brassinolide analogs with a modified ring B and their plant growth-promoting activity. Agricultural and Biological Chemistry 50: 1821–1830

    Article  CAS  Google Scholar 

  • Kobayashi, Y., Taguchi, T. (2000). Studies on organofluorine compounds: an overview of our 30 years. Yakugaky Zasshi 120: 951–958.

    CAS  Google Scholar 

  • Kohout, L., Strand, M., Kaminek, M. (1991). Types of brassinosteroids and their bioassay. In Brassinosteroids: Chemistry, Bioactivity, and Applications, pp. 56–73. Eds H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology 122: 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Ladyzhenskaya, E. P., Korableva, N. P. (2001). Effects of growth regulators on H+ translocation across the membranes of plasma membrane vesicles from potato tuber cells. Applied Biochemistry and Microbiology 37: 521–523.

    Article  CAS  Google Scholar 

  • Li, J., Chory, J. (1997). A putative leucine-rich receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Chory, J. (1999). Brassinosteroid actions in plants. Journal of Experimental Botany 50: 275–282.

    CAS  Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T. C., Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Nam, K. H., Vafeados, D., Chory, D. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiology 127: 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, J., Greenberg, A., Dolbier, W. Jr., Eswarakrishnan, S. (1988). Fluorine-Containing Molecules: Structure, Reactivity, Synthesis. VCH Publisher, New York.

    Google Scholar 

  • Maeda, E. (1965). Rate of lamina inclination in excised rice leaves. Physiology Plantarum 18: 813–827.

    Article  CAS  Google Scholar 

  • MacMorris, T., Chávez, R., Patil, P. (1996). Improved synthesis of brassinolide. Journal of the Chemical Society Perkin Transactions 1, 295–302.

    Article  Google Scholar 

  • Mandava, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39: 23–52.

    Article  CAS  Google Scholar 

  • Martin, C., Galdwell, J., Graham, M., Grierson, J., Kroll, K., Cowan, M., Lwellen, T., Rasey, J. Casciari, J., Krohn, K. (1992). Non invasive detection of hypoxic myocardium using fluorine-18-fluoromisonidazole and positron emission tomography. Journal of Nuclear Medicine 22: 2202.

    Google Scholar 

  • Mayumi, K., Shibaoka, H. (1995). A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of Azuki bean epicotyls. Plant Cell Physiology 36: 173–181.

    CAS  Google Scholar 

  • McMorris, T. C., Patil, P. A., Chavez, R. G., Baker, M. E., Clouse, S. D. (1994). Synthesis and biological activity of 28-homobrassinolide and analogues. Phytochemistry 36: 585–589.

    Article  CAS  Google Scholar 

  • Mori, K. (1980). Synthesis of a brassinolide analog with high plant growth promoting activity. Agricultural and Biological Chemistry 44: 1211–1212.

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    Article  CAS  Google Scholar 

  • Nakayama, M., Yamane, H., Murofushi, N., Takahashi, N., Mander, L. N., Seto, H. (1991). Gibberellin biosynthetic pathway and the physiologically active gibberellin in the shoot of Cucumis sativus L. Journal of Plant Growth Regulation 10: 115–119.

    Article  CAS  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F. E., Yoshida, S., Feldmann, K. A. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiology 124: 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Oh, M. H., Romanow, W., Smith, R., Zamski, E., Sasse, J., Clouse, S. (1998). Soybean BRU1 encodes a functional xyloglucan endo-transglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation. Plant Cell Physiology 39: 124–130.

    Article  CAS  Google Scholar 

  • O’Hagan, D., Rzepa, H. (1997). Some influences of fluorine in bioorganic chemistry. Chemical Communications 645–652.

    Google Scholar 

  • Okada, K., Mori, K. (1983). Stereoselective synthesis of dolicholide, a plant growth-promoting steroid. Agricultural Biological Chemistry 47: 925–926.

    Article  CAS  Google Scholar 

  • Ramírez, A., Gros, E., Galagovsky, L. (2000). Effect on bioactivity due to C-5 heteroatom substituents on synthetic 28-Homobrassinosteroids analogs. Tetrahedron 56: 6171–6181.

    Article  Google Scholar 

  • Richter, K., Koolman, J. (1991). Antiecdysteroid effects of brassinosteroids. In Brassinosteroids - Chemistry, Bioactivity and Applications, pp. 265–278. Eds H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Saito, T., Kamiya, Y., Yamane, H., Murofushi, N., Sakurai, A., Takahashi, N. (1998). Effects of fluorogibberellins on plant growth and gibberellin 30-hydroxylases. Plant Cell Physiology 39: 574–580.

    Article  CAS  Google Scholar 

  • Sakurai, A. (1999). Biosynthesis. In Brassinosteroids: Steroidal Plant Hormones, pp. 91–111. Eds A Sakurai, T Yokota and S D Clouse. Springer Verlag, Tokyo.

    Google Scholar 

  • Sasse, J. M. (1997). Recent progress in brassinosteroid research. Physiologia Plantarum 100: 696–701.

    Article  CAS  Google Scholar 

  • Schaefer, S., Medeiro, A. S., Ramirez, J. A., Galagovsky, L. R., Pereira-Netto, A. B. (2002). Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Reports 20: 1093–1097.

    Article  CAS  Google Scholar 

  • Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., Chory, J. (1999). The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes and Development 13: 3259–3270.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzenberg, K., Doumas, P., Jouanin, L., Pilate, G. (1994). Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiology 14: 27–35.

    Article  Google Scholar 

  • Seto, H., Fujioka, S., Koshino, H., Suenaga, T., Yoshida, S., Watanabe, T., Takatsuto, S. (1 998).Epimerization at C-5 of brassinolide with sodium methoxide and the biological activity of 5-epibrassinolide in the rice lamina inclination assay. Journal of the Chemical Society, Perkin Transactions 1: 3355–3358.

    Google Scholar 

  • Seto, H., Fujioka, S., Koshino, H., Suenaga, T., Yoshida, S., Watanabe, T., Takatsuto, S. (1999). 2,3,5-Triepi-brassinolide: preparation and biological activity in rice lamina inclination test. Phytochemistry 52: 815–818.

    Google Scholar 

  • Sharpless, K. B., Amberg, W., Bennani, Y. L. (1992). The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement. Journal of Organic Chemistry 57: 2768–2771.

    Article  CAS  Google Scholar 

  • Shekhawat, N. S., Rathore, T. S., Singh, R. P., Deora, N. S., Rao, S. R. (1993). Factors affecting in vitro clonal propagation of Prosopis cineraria. Plant Growth Regulation 12: 273–280.

    Article  CAS  Google Scholar 

  • Spray, C., Phinney, B. O., Gaskin, P., Gilmour, S. J., MacMillan, J. (1984). Internode length in Zea mays L. Planta1 60: 464–468

    Article  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Takatsuto, S., Ikekawa, N., Morishita, T., Abe, H. (1987). Structure-activity relationship of brassinosteroids with respect to the A/B-ring functional groups. Chemical Pharmaceutical Bulletin. 35: 211–216.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Yazawa, N., Ikekawa, N., Morishita, T., Abe, H. (1983a). Synthesis of (24R)-28- homobrassinolide and structure-activity relationships of brassinosteroids in the rice lamina inclination test. Phytochemistry 22: 1393–1397.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Yazawa, N., Ikekawa, N., Takematsu, T., Takeuchi, Y., Koguchi, M. (1983b). Structure-activity relationship of brassinosteroids. Phytochemistry 22: 2437–2441.

    Article  CAS  Google Scholar 

  • Takeno, K., Pharis, R. (1982). Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiology 23: 1275–1281.

    CAS  Google Scholar 

  • Thompson, M. J., Mandava, N., Flippen-Anderson, J. L., Worley, J. F., Dutky, S. R., Robbins, W. E., Lusby, W. (1979). Synthesis of brassinosteroids: new plant-growth promoting steroids. Journal of Organic Chemistry 44: 5002–5004.

    Article  CAS  Google Scholar 

  • Thompson, M. J., Mandava, N. B., Meudt, W.J., Lusby, W. R., Spaulding, D. W. (1981). Synthesis and biological activity of brassinolide and its 220, 23 ß -isomer: novel plant growth promoting steroids. Steroids 38: 567–580.

    CAS  Google Scholar 

  • Thompson, M. J., Meudt, W. J., Mandava, N. B., Dutky, S. R., Lusby, W. R., Spaulding, D. W. (1982). Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effect. Steroids 39: 89–105.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, B., Takatsuto, S., Yokota, T., Adam, G. (1995). Synthesis of secasterone and further epimeric 2,3- epoxybrassinosteroids. Journal of the Chemical Society, Perkin Transactions 1: 1495–1498.

    Article  Google Scholar 

  • Wada, K., Marumo, S., Abe, H., Morishita, T., Nakamura, K., Uchiyama, M., Mori, K. (1984). A rice lamina inclination test–a micro-quantitative bioassay for brassinosteroids. Agricultural and Biological Chemistry 48: 719–726.

    Article  CAS  Google Scholar 

  • Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., Mori, K. (1981). Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant and Cell Physiology 22: 323–326.

    CAS  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., He, J. X., Chen, M., Vafeados, D., Yang, Y. L., Fujioka, S., Yoshida, S., Asami, T., Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. Y., Seto, H., Fujioka, S., Yoshida, S., Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380–383.

    Article  PubMed  CAS  Google Scholar 

  • Welch, J., Eswarakrishnan, S. (1991). Fluorine in Bioorganic Chemistry. John Wiley Sons, New York.

    Google Scholar 

  • Yokota, T., Baba, J., Arima, M., Morita, M., Takahashi, N. (1983). Isolation and structures of new brassinolide-related compounds in higher plants. Tennen Yuki Kagob. Toronkai Koen Yoshishu 26: 70–77 [C. A. 100:48616].

    Google Scholar 

  • Yokota, T., Nakayama, N., Wakisaka, T. (1994). 3-Dehydroteasterone, a 3,6 diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience Biotechnology and Biochemistry 58: 1183–1185.

    Google Scholar 

  • Xu, R., He, Y-J., Wang, Y-Q., Zhao, Y-J. (1994). Preliminary study of brassinosterone binding sites from mung bean epicotyls. Acta Phytophysiologica Sinica 20: 298–302.

    CAS  Google Scholar 

  • Xu, W., Prugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C., Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555–1567.

    Google Scholar 

  • Yin, Y., Wang, Z. Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science 2: 137–143.

    Article  Google Scholar 

  • Zanol, G. C., Fortes, G. R. L., Silva, J. B., Faria, J. T. C., Gottinari, R. A., Centellas, A. Q. (1998). Uso do ácido indolbutírico e do escuro no enraizamento in vitro do porta-enxerto de macieira Marubakaido. Ciência Rural, 28: 387–391.

    Article  Google Scholar 

  • Zullo, M. A. T., Adam, G. (2002). Brassinosteroid phytohormones–structure, bioactivity and applications. Brazilian Journal of Plant Physiology 14: 143–181.

    Article  CAS  Google Scholar 

  • Zullo, M. A. T., Kohout, L., De Azevedo, M. B. M. (2003). Some notes on the terminology of brassinosteroids. Plant Growth Regulation 39: 1–11.

    Article  CAS  Google Scholar 

  • Zurek, D. M., Clouse, S. D. (1994). Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiology 104: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, D. M., Rayle, D. L., McMorris, T. C., Clouse, S. D. (1994). Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiology 104: 505–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pereira-Netto, A.B., Schaefer, S., Galagovsky, L.R., Ramirez, J.A. (2003). Brassinosteroid-Driven Modulation of Stem Elongation and Apical Dominance: Applications in Micropropagation. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0948-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0948-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6464-6

  • Online ISBN: 978-94-017-0948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics