Skip to main content

Brassinosteroids Promote Seed Germination

  • Chapter

Abstract

Seed germination of Arabidopsis thaliana, Nicotiana tabacum, and of parasitic angiosperms (Orobranche and Striga species) is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar testa and/or endosperm tissues. Brassinosteroids (BR) and gibberellins (GA) promote seed germination of these species and counteract the germination-inhibition by abscisic acid (ABA). Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate, but germination in this phenotype can also be rescued by BR. Germination of both the BR biosynthetic mutant det2–1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. In contrast to GA, BR does not release tobacco photodormancy; i.e. seed germination in darkness remains blocked. BR promotes germination of nonphotodormant tobacco seeds, but did not appreciably affect the induction of class I ß-1,3-glucanase (ßGlu I) in the micropylar endosperm. BR and GA promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Xyloglucan endo-transglycosylase (XET) enzyme activity accumulates in the embryo and the endosperm of germinating tobacco seeds and this appears to be partially controlled of BR. GA and light seem to act in a common pathway to release photodormancy, whereas BR does not release photodormancy. Induction of ßGlu I in the micropylar endosperm and promotion of release of ‘coat-imposed’ dormancy seem to be associated with the GA-dependent pathway, but not with BR signaling. It is proposed that BR promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA-independent manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann, T. (1999). Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Arcila, J.,Mohapatra, S C. (1983). Development of tobacco seedling. 2. Morphogenesis during radicle protrusion. Tobacco Science 27: 35–40.

    Google Scholar 

  • Babiker, A. G. T., Ma, Y. Q., Sugimoto, Y., Inanaga, S. (2000). Conditioning period, CO2 and GR24 influence ethylene biosynthesis and germination of Striga hermonthica. Physiologia Plantarum 109: 75–80.

    Article  CAS  Google Scholar 

  • Beaudoin, N., Serizet, C., Gosti, F., Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell 12: 1103–1115.

    PubMed  CAS  Google Scholar 

  • Bewley, J. D. (1997a). Breaking down the walls–a role for endo-ß-mannanase in release from seed dormancy? Trends in Plant Science 2: 464–469.

    Article  Google Scholar 

  • Bewley, J D. (1 997b). Seed germination and dormancy. The Plant Cell 9: 1055–1066.

    Google Scholar 

  • Bishop, G. J., Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. The Plant Cell 14: 97–110.

    Google Scholar 

  • Campbell, P., Braam, J. (1999). Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends in Plant Science 4: 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Nonogaki, H., Bradford, K. J. (2002). A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany 53: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • De Silva, J., Jarman, C. D., Arrowsmith, D., Stronach, M. S., Chengappa, S., Sidebottom, C., Reid, J. S. G. (1993). Molecular characterization of a xyloglucan-specific endo-1,4-ß-D-glucanase (xyloglucan endotransglycosylase) from nasturtium seeds. The Plant Journal 3: 701–711.

    Article  PubMed  Google Scholar 

  • Debeaujon, I., Koornneef, M. (2000). Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology 122: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon, I., Léon-Kloosterziel, K. M., Koornneef, M. (2000). Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122: 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, M., Dea, I. C. M., Bulpin, P. V., Reid, J. S. G. (1985). Xyloglucan amyloid mobilization in the cotyledons of Tropaeolum majus seeds following germination. Planta 163: 133–140.

    Article  CAS  Google Scholar 

  • Ephritikhine, G., Pagant, S., Fujioka, S., Takatsuto, S., Lapous, D., Caboche, M., Kendrick, R. E., BarbierBrygoo, H. (1999). The sax1 mutation defines a new locus involved in the brassinosteroid biosynthesis pathway of Arabidopsis thaliana. The Plant Journal 18: 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Fanutti, C., Gidley, M. J., Reid, J. S. G. (1993). Action of a pure xyloglucan endo-transglycosylase (formaly called xyloglucan-specific endo-1,4-ß-D-glucanase) from the cotyledons of germinated nasturtium seeds. The Plant Journal 3: 691–700.

    Article  PubMed  CAS  Google Scholar 

  • Friebe, A., Volz, A., Schmidt, J., Voigt, B., Adam, G., Schnabl, H. (1999). 24-Epi-secasterone and 24-epicastasterone from Lychnis viscaria seeds. Phytochemistry 52: 1607–1610.

    Google Scholar 

  • Fry, S C. (1995). Polysaccharide-modifying enzymes in the plant cell wall. Annual Review of Plant Physiology and Plant Molecular Biology 46: 497–520.

    Article  CAS  Google Scholar 

  • Fry, S C. (1997). Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: Optimization for xyloglucan endotransglycosylase ( XET) activity. The Plant Journal 11: 1141–1150.

    Google Scholar 

  • Gregory, L. E. (1981). Acceleration of plant growth through seed treatment with brassins. American Journal of Botany 68: 586–588.

    Article  CAS  Google Scholar 

  • Groot, S. P. C., Karssen, C. M. (1992). Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiology 99: 952–958.

    Article  PubMed  CAS  Google Scholar 

  • Hilhorst, H. W. M. (1995). A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5: 61–73.

    Google Scholar 

  • Hilhorst, H. W. M., Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation 11: 225–238.

    Article  CAS  Google Scholar 

  • Jones-Held, S., Vandoren, M., Lockwood, T. (1996). Brassinolide application to Lepidium sativum seeds and the effects on seedling growth. Journal of Plant Growth Regulation 15: 63–67.

    Article  CAS  Google Scholar 

  • Karssen, C. M., Zagórsky, S., Kepczynski, J., Groot, S. P. C. (1989). Key role for endogenous gibberellins in the control of seed germination. Annals of Botany 63: 71–80.

    CAS  Google Scholar 

  • Koornneef, M., Bentsink, L., Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology 5: 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, M., Karssen, C. M. (1994). Seed dormancy and germination. In Arabidopsis, pp 313–334. Eds E M Meyerowitz and C R Somerville, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213: 758–763.

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger, G. (2003). Functions and regulation of ß-1,3-glucanase during seed germination, dormancy release and after-ripening. Seed Science Research 13: 17–34.

    Article  CAS  Google Scholar 

  • Leubner-Metzger, G. (2002). Seed after-ripening and over-expression of class I ß-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215: 659–698.

    Article  Google Scholar 

  • Leubner-Metzger, G., Fründt, C., Meins, F. Jr. (1996). Effects of gibberellins, darkness and osmotica on endosperm rupture and class I ß-1,3-glucanase induction in tobacco seed germination. Planta 199: 282–288.

    Article  CAS  Google Scholar 

  • Leubner-Metzger, G., Fründt, C., Vögeli-Lange, R., Meins, F. Jr. (1995). Class I ß-1,3-glucanase in the endosperm of tobacco during germination. Plant Physiology 109: 751–759.

    PubMed  CAS  Google Scholar 

  • Leubner-Metzger, G., Meins, F. Jr. (2000). Sense transformation reveals a novel role for class I ß-1,3- glucanase in tobacco seed germination. The Plant Journal 23: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger, G., Petruzzelli, L., Waldvogel, R., Vögeli-Lange, R., Meins, F. Jr. (1998). Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I ß1,3-glucanase during tobacco seed germination. Plant Molecular Biology 38: 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Liptay, A., Schopfer, P. (1983). Effect of water stress, seed coat restraint, and abscisic acid upon different germination capabilities of two tomato lines at low temperature. Plant Physiology 73: 935–938.

    Article  PubMed  CAS  Google Scholar 

  • Neff, M. M., Fankhauser, C., Chory, J. (2000). Light: an indicator of time and place. Genes and Development 14: 257–271.

    PubMed  CAS  Google Scholar 

  • Petruzzelli, L., Coraggio, I., Leubner-Metzger, G. (2000). Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211: 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J., Altmann, T., Adam, G. (1997). Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry 45: 1325–1327.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P., Plachy, C. (1984). Control of seed germination by abscisic acid. II. Effect on embryo water uptake in Brassica napus L. Plant Physiology 76: 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Steber, C. M., Cooney, S. E., McCourt, P. (1998). Isolation of the GA-response mutant sly1 as a suppressor of ABI1–1 in Arabidopsis thaliana. Genetics 149: 509–521.

    PubMed  CAS  Google Scholar 

  • Steber, C. M., McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology 125: 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Omigawa, Y., Ogasawara, M., Yoneyama, K., Konnai, M., Worsham, A. D. (1995). Effects of brassinosteroids on conditioning and germination of clover broomrape (Orobanche minor) seeds. Plant Growth Regulation 16: 153–160.

    Article  CAS  Google Scholar 

  • Takeuchi, Y., Worsham, A. D., Awad, A. E. (1991). Effects of brassinolide on conditioning and germination of witchweed (Striga asiatica) seeds. In Brassinosteroids: chemistry, bioactivity and applications, pp 298–305. Eds H G Cuttler, T Yokota and G Adam, American Chemical Society, Washington.

    Google Scholar 

  • Tine, M. A. S., Cortelazzo, A. L., Buckeridge, M. S. (2000). Xyloglucan mobilization in cotyledons of developing plantlets of Hymenaeae courbaril L. ( Leguminoseae-Caesalpinoideae ). Plant Science 154: 117–126.

    Google Scholar 

  • Toorop, P. E., van Aelst, A. C., Hilhorst, H. W. M. (2000). The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. Journal of Experimental Botany 51: 1371–1379.

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu, T., Kawaide, H., Mitsuhashi, W., Inoue, Y., Kamiya, Y. (1998). Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiology 118: 1517–1523.

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu, T., Tsuji, H., Yamane, H., Nakayama, M., Yamaguchi, I., Murofushi, N., Takahashi, N., Inoue, Y. (1993). Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. Journal of Plant Growth Regulation 12: 85–90.

    Article  CAS  Google Scholar 

  • Ullah, H., Chen, J. G., Wang, S. C., Jones, A. M. (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology 129: 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.T., Leubner-Metzger, G., Meins, F. Jr., Bradford, K. J. (2000). Class I ß-1, 3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology 126: 1299–1313.

    Google Scholar 

  • Yamaguchi, S., Kamiya, Y., Sun, T. P. (2001). Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. The Plant Journal 28: 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Smith, M. W., Brown, R. G. S., Kamiya, Y., Sun, T. P. (1998). Phytochrome regulation and differential expression of gibberellin 3ß-hydroxylase genes in germinating Arabidopsis seeds. The Plant Cell 10: 2115–2126.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Wakizuka, T., Hirai, K., Fujii, S., Fujita, A. (1987). Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proceeding of Plant Growth Regulation Society of America 14: 26–27.

    Google Scholar 

  • Yokota, T., Matsuoka, T., Koarai, T., Nakayama, M. (1996). 2-Deoxybrassinolide, a brassinosteroid from Pisum sativum seed. Phytochemistry 42: 509–511.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leubner-Metzger, G. (2003). Brassinosteroids Promote Seed Germination. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0948-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0948-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6464-6

  • Online ISBN: 978-94-017-0948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics