Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 100))

  • 724 Accesses

Abstract

Black holes are a subject of much interest in various areas of astro-physics and physics. There is little doubt among astronomers about black hole candidates in binary systems and there is also evidence that the matter of galaxies is belched in ‘active galactic nuclei’ which are black holes with a million times the solar mass. Why do black holes occur? The standard answer is gravitational collapse and the existence of black hole solutions in general relativity. The basic characteristic of a black hole within the framework of general relativity is that it has a curvature singularity where all the matter is supposed to have fallen in and that this singularity is ‘surrounded’ by an event horizon. This is a null surface that divides the space-time into two distinct regions and plays a fundamental role in the description of the properties of a black hole. The linear stability analysis for the Schwarzschild black hole is a significant contribution of Vishveshwara [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.V. Vishveshwara, Phys. Rev. D1 (1970) 2870.

    Google Scholar 

  2. S. Hawking and R. Penrose, The Nature of Space and Time, Princeton Univ. Press, (1996); Sci. Am. 275 (1996) 44.

    Google Scholar 

  3. L. Susskind, Some Speculations about Black Hole Entropy in String Theory,hepth/9309145.

    Google Scholar 

  4. A. Sen, Extremal Black Holes and Elementary String States,hep-th/9504147.

    Google Scholar 

  5. A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99, hep-th/9601029.

    Google Scholar 

  6. C. V. Johnson, R. R. Khuri and R. C. Myers, Phys. Lett. B378 (1996) 78, hepth/9603061.

    Google Scholar 

  7. R. Breckenridge, D. Lowe, R. Meyers, A. Peet, A. Strominger and C. Vafa, Phys. Lett. B381 (1996) 423, hep-th/9603078;

    Google Scholar 

  8. R. Breckenridge, R. Meyers, A. Peet and C. Vafa, Phys. Lett. B391 (1997) 93, hep-th/9602065.

    Google Scholar 

  9. C. Callan and J. Maldacena, Nucl. Phys. B475 (1996) 645, hep-th/9602043.

    Google Scholar 

  10. J. Maldacena and L. Susskind, Nucl. Phys. B475 (1996) 679, hep-th/9604042;

    Google Scholar 

  11. A. Dhar, G. Mandai and S. R. Wadia, Phys. Lett. B388 (1996) 51, hep-th/9605234.

    Google Scholar 

  12. S. R. Das and S. D. Mathur, Nucl. Phys. B482 (1996)153, hep-th/9607149.

    Google Scholar 

  13. J. Maldacena and A. Strominger, Black Hole Grey Body Factors and D-brane Spectroscopy,hep-th/9609026; Universal Low-Energy Dynamics for Rotating Black Holes,hep-th/9702015.

    Google Scholar 

  14. C. Callan, S. Gubser, I. Klebanov and A. Tseytlin, Absorption of Fixed Scalars and the D-brane Approach to Black Holes,hep-th/9610172.

    Google Scholar 

  15. I. Klebanov and M. Krasnitz, Fixed Scalar Grey Body Factors in Five and Four Dimensions hep-th/9612051; Testing Effective String Models of Black Holes with Fixed Scalars htp-th/9703216.

    Google Scholar 

  16. S. F. Hassan and S. R. Wadia, Phys. Lett. B402 (1997) 43, hep-th/9703163.

    Google Scholar 

  17. S. F. Hassan and S. R. Wadia, Gauge Theory Description of D-brane Black Holes: Emergence of the Effective SCFT and Hawking Radiation,hep-th/9712213.

    Google Scholar 

  18. G. t’Hooft, The Scattering matrix Approach for the Quantum Black Hole,grgc/9607022.

    Google Scholar 

  19. J. Polchinski, TASI Lectures on D-branes,hep-th/9611050.

    Google Scholar 

  20. J. Maldacena, Black Holes in String Theory,Ph.D. Thesis, hep-th/9607235.

    Google Scholar 

  21. J. Maldacena, The Large N limit of Superconformal Field Theories and Supergravity,hep-th/971120.

    Google Scholar 

  22. S. Gubser, I. Klebanov and A. Polyakov, Gauge Theory Correlators from Noncritical String Theory,hep-th/9802109.

    Google Scholar 

  23. E. Witten, Anti De Sitter Space and Holography,hep-th/9802150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wadia, S.R. (1999). Micro-Structure of Black Holes and String Theory. In: Iyer, B.R., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0934-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0934-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5121-9

  • Online ISBN: 978-94-017-0934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics