Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 100))

  • 723 Accesses

Abstract

The concept of inertia, which originated with Galileo, found a mathematical expression in Newton’s laws of motion. According to the second law of motion, the force acting on a particle is proportional to the acceleration of the particle. The constant of proportionality measures the inertia of the particle and is called its inertial mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwarzschild, K. (1903), Nachr. Ges. Wis. Gottingen, 128, 132.

    Google Scholar 

  2. Tetrode, H. (1922), Z. Phys., 10, 317.

    Article  ADS  Google Scholar 

  3. Fokker, A.D. (1929a) Z. Phys. 58 386.

    Article  MATH  Google Scholar 

  4. Fokker, A.D. (1929b) Physica 9 33.

    Google Scholar 

  5. Fokker, A.D. (1932) Physica 12 145.

    MATH  Google Scholar 

  6. Wheeler, J.A. and Feynman, R.P. (1945), Rev. Mod. Phys., 17, 156.

    Article  ADS  Google Scholar 

  7. Dirac, P.A.M. (1938) Proc. Roy. Soc. A167 148.

    Article  ADS  Google Scholar 

  8. Hogarth, J.E. (1962) Proc. Roy. Soc. A267 365.

    Article  MathSciNet  ADS  Google Scholar 

  9. Bondi, H. and Gold, T. (1948) M.N.R.A.S. 108 252.

    ADS  MATH  Google Scholar 

  10. Hoyle, F. (1948) M.N.R.A.S. 108 372.

    ADS  MATH  Google Scholar 

  11. Hoyle, F. and Narlikar, J.V. (1963) Proc. Roy. Soc. A277 1.

    ADS  Google Scholar 

  12. Hoyle, F. and Narlikar, J.V. (1969) Ann. Phys. New York 54 207.

    Article  MathSciNet  ADS  Google Scholar 

  13. Hoyle, F. and Narlikar, J.V. (1971) Ann. Phys. New York 62 44.

    Article  MathSciNet  ADS  Google Scholar 

  14. Hoyle, F. and Narlikar, J.V. (1993) Proc. Roy. Soc. A442 469.

    ADS  Google Scholar 

  15. Hoyle, F. and Narlikar, J.V. (1964) Proc. Roy. Soc. A282 191.

    MathSciNet  ADS  Google Scholar 

  16. Hoyle, F. and Narlikar, J.V. (1966) Proc. Roy. Soc. A294 138.

    ADS  Google Scholar 

  17. Synge, J.L. (1960) Relativity the General Theory North Holland, Amsterdam.

    Google Scholar 

  18. DeWitt, B.S. and Brehme, R.W. (1960) Ann. Phys. (New York) 9 220.

    Article  MathSciNet  ADS  Google Scholar 

  19. Narlikar, J V (1974) J. Phys. A7 1274

    MathSciNet  ADS  Google Scholar 

  20. Wheeler, J.A. and Feynman, R.P. (1949), Rev. Mod. Phys., 21, 424.

    MathSciNet  ADS  Google Scholar 

  21. Hoyle, F. and Narlikar, J.V. (1974), Action at a Distance in Physics and Cosmology, Freeman, San Francisco.

    Google Scholar 

  22. Bagla, J.S., Padmanabhan, T. and Narlikar, J.V. (1996), Comm. Astrophys., 18, 275.

    ADS  Google Scholar 

  23. Islam, J.N. (1968), Proc. Roy. Soc., A306, 487.

    Article  ADS  Google Scholar 

  24. Hoyle, F., Burbidge and Narlikar, J.V. (1995), Proc. Roy. Soc., A448, 191.

    Article  ADS  MATH  Google Scholar 

  25. Sachs, R.,Narlikar, J.V. and Hoyle, F., A hi A, 313, 703.

    Google Scholar 

  26. Narlikar, J.V. (1998), in Proceedings of IAU Symposium 183: Cosmological Parameters and the Evolution of the Universe, Ed. K. Sato, Dordrecht: Kluwer, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narlikar, J.V. (1999). Mach’s Principle in Electrodynamics and Inertia. In: Iyer, B.R., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0934-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0934-7_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5121-9

  • Online ISBN: 978-94-017-0934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics