Skip to main content

Activated Sludge and Suspended Growth Bioreactors

  • Chapter
Bioreactors for Waste Gas Treatment

Part of the book series: Environmental Pollution ((EPOL,volume 4))

Abstract

Of the number of alternative designs for biological treatment of contaminated air streams, activated sludge reactors are often overlooked. The concept behind activated sludge treatment is simple: in a single reactor the contaminant transfers from gas into bulk liquid where it is degraded by a suspension of bacteria. The gas is generally introduced into the bottom of the liquid in the reactor in the form of dispersed bubbles. Using this most simplistic definition, a number of terms have been used to describe these systems with subtle differences implied. In true activated sludge treatment, the primary function is to biologically treat dissolved contaminants such as the organic carbon in conventional municipal waste water. The air contaminants, such as odours or volatile organic compounds, are co-degraded with the contaminants dissolved in the inlet waste water. In general these reactors are not specifically designed for optimal gas treatment. Slight variations where the reactor is specifically designed for gas treatment and is not co-degrading waste water contaminants have been termed sparged suspended growth bioreactors (Bielefeldt and Stensel, 1998), suspended growth reactors (Neal and Loehr, 2000), and bubble columns (Andrews and Noah, 1995). More specialised designs of these simple systems are airlift bioreactors which are most widely used in chemical engineering applications (Chisti, 1989; Cesario et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, S. 1980. Odor control of wastewater treatment plants. J. WPCF. 52: 906–914

    CAS  Google Scholar 

  • Andrews, G.F. and Noah, K.S. 1995. Design of gas-treatment bioreactors. Biotechnol. Prog. 11: 498509.

    Google Scholar 

  • ASCE. 1984. ASCE standard measurement of oxygen transfer in clean water. Am. Soc. Civ. Eng., New York, USA.

    Google Scholar 

  • Basu, R., Clausen, E.C. and Gaddy, J.L. 1996. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog. 15: 234–238.

    Google Scholar 

  • Bhattarai, R. 2000. Wastewater Regulatory Manager, City of Austin, USA. Personal Communication. Bielefeldt, A.R. 1996. Ph.D. Dissertation. University of Washington. Seattle, WA, USA.

    Google Scholar 

  • Bielefeldt, A.R., Stensel, H.D. and Strand. S.E. 1995. Cometabolic degradation of TCE and DCE without intermediate toxicity. J. Environ. Eng. 121: 791–797.

    Google Scholar 

  • Bielefeldt, A.R. and Stensel, H.D. 1998. BTEX-contaminated gas treatment in a shallow, sparged, suspended-growth bioreactor. Bioremed. J. I: 241–254.

    Google Scholar 

  • Bielefeldt, A.R. and Stensel, H.D. 1999. Treating VOC-contaminated gases in activated sludge: mechanistic model to evaluate design and performance. Environ. Sci. Technol. 33: 3234–3240.

    Google Scholar 

  • Bowker and Assoc. 1996. Biological odor control by diffusion into activated sludge basins. NEWEA Journal. 30: 137–146.

    Google Scholar 

  • Bowker, R.P.G. 1998. Biological systems: Aeration basins. In: Odor and VOC control handbook. H.J. Rafson (Ed.). McGraw-Hill, New York, USA.

    Google Scholar 

  • Bowker, R.P.G. 1999. Activated sludge diffusion. Water Environ. Technol. 11: 30–35.

    Google Scholar 

  • Card, T.R. 1998. Fundamentals: chemistry and characteristics of odors and VOCs. In: Odor and VOC control handbook. H.J. Rafson (Ed.). McGraw-Hill, New York, USA.

    Google Scholar 

  • Cesario, M.T., Beeftink, H.H. and Tramper, J. 1995. Feasibility of using water-immiscible organic solvents in biological waste-gas treatment. Bioproc. Eng. 12: 55–63.

    Google Scholar 

  • Cesario, M.T., Beverloo, W.A., Tramper, J. and Beeftink, H.H. 1997. Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme Microb. Technol. 21: 578–588.

    Google Scholar 

  • Chisti, M.Y. 1989. Airlift bioreactors. Elsevier, London, U.K.

    Google Scholar 

  • Cox, C.D., Woo, H-J. and Robinson, K.G. 1998. Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol. 37: 97–104.

    Google Scholar 

  • CRC. 1998. Handbook of chemistry and physics, 79th Edition. D.R. Lide (Ed.). CRC Press, Boca Raton, USA.

    Google Scholar 

  • Dasu, B.N., Deshmane, V., Shanmugasundram, R., Lee, C-M. and Sublette, K.L. 1993. Microbial reduction of sulfur dioxide and nitric oxide. Fuel. 72: 1705–1714.

    Article  CAS  Google Scholar 

  • DeHollander, G.R., Overcamp, T.J. and Grady, C.P.L. 1998. Performance of a suspended-growth bioscrubber for the control of methanol. J. Air Waste Manage. Assoc. 48: 872–876.

    Google Scholar 

  • Diks, R.M.M, Ottengraf, S.P.P. and Vrijland, S. 1994. The existence of a biological equilibrium in a trickling filter for waste gas purification. Biotechnol. Bioeng. 44: 1279–1287.

    Google Scholar 

  • Dolfing, J., Wijngaard, A.J. van den and Janssen, D.B. 1993. Microbiological aspects of the removal of chlorinated hydrocarbons from air. Biodegradation. 4: 261–282.

    Article  CAS  Google Scholar 

  • Ensely, B.D. and Kurisko, P.R. 1994. A gas lift bioreactor for removal of contaminants from the vapor phase. Appl. Environ. Microbiol. 60: 285–290.

    Google Scholar 

  • Ergas, Si., Kinney, K., Fuller, M.E. and Scow, K.M. 1994. Characterization of a compost biofiltration system degrading dichloromethane. Biotechnol. Bioeng. 44: 1048–1054.

    Google Scholar 

  • Govind, R., Utgikar, V., Zhao, W., Shan, Y., Parvatiyar, M. and Bishop, D.F. 1993. Development of novel biofilters for treatment of volatile organic compounds. In: IGT Symposium on Gas, Oil and Environmental Biotechnology. Colorado Springs, USA.

    Google Scholar 

  • Hsieh, C., Babcock, R.W. and Stenstrom, M.K. 1993. Estimating emissions of 20 VOCs. 11: Diffused aeration. J. Environ. Eng. 119: 1099–1118.

    Google Scholar 

  • Haug, R.T. 1993. Odor management I - Quantifying and treating. In: The practical handbook of compost engineering. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Hecht, V., Brebbermann, D., Bremer, P. and Deckwer, W.-D. 1995. Cometabolic degradation of trichloroethylene in a bubble column bioscrubber. Biotechnol. Bioeng. 47: 461–469.

    Google Scholar 

  • Joyce, J. and Sorensen, H. 1999. Bioscrubber design: How to improve odor-control flexibility and operational effectiveness. Water Environ. Technol. 11: 37–42.

    Google Scholar 

  • Joyce, J. and Sorensen, H. 1998. The design of bioscrubbers for improved odor control flexibility and operational effectiveness. In: Proceedings of the Water Environment Federation, 7151 Annual Conference and Exposition. 7: 249–255.

    Google Scholar 

  • Kampbell, D.H., Wilson, J.T., Reed, H.W. and Stocksdale, T.T. 1987. Removal of aliphatic hydrocarbons in a soil bioreactor. J. Air Poll. Control Assoc. 37: 1236–1242.

    Google Scholar 

  • Kennes, C., Huistra, A., and Janssen, D.H. 1993. Continuous biodegradation of toxic chlorinated compounds by a defined bacterial consortium. Med. Fac. Landbouww. Univ. Gent. 58: 1749–1753.

    Google Scholar 

  • Kiared, K., Wu, G., Beerli, M., Rothenbuhler, M. and Heitz, M. 1997. Application of biofiltration to the control of VOC emissions. Environ. Technol. 18: 55–63.

    Google Scholar 

  • Landa, A.S., Sipkema, E.M., Weijma, J., Beenackers, A.A.C.M., Dolling, J. and Janssen, D.B. 1994. cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appt. Environ. Microbiol. 60: 3368–3374.

    Google Scholar 

  • Libra, J.A. 1993. Stripping of organic compounds in an aerated stirred tank reactor. Fortschr.-Ber. VDI Reihe 15 Nr. 102. Dusseldorf. VDI-Verlag.

    Google Scholar 

  • Magbanua, B. S. Jr., Poole, L. J. and Grady, C. P. L. Jr. 1998. Estimation of the competent biomass concentration for the degradation of synthetic organic compounds in an activated sludge culture receiving a multicomponent feed. Water Sci. Technol. 38: 55–62.

    Google Scholar 

  • Matter-Muller, C., W. Gujer, and W. Giger. 1981. Transfer of volatile substances from water to the atmosphere. Water Res. 15: 1271–1279.

    Article  Google Scholar 

  • Metcalf and Eddy. 1991. Wastewater Engineering, Third Edition. McGraw-Hill, New York, USA.

    Google Scholar 

  • Neal, A.B. and Loehr, R.C. 2000. Use of biofilters and suspended-growth reactors to treat VOCs. Waste Mgmt. 20: 59–68.

    Article  CAS  Google Scholar 

  • Ostojic, N., Les, A.P., and Forbes, R. 1992. Activated sludge treatment for odor control. Biocycle. 33: 74–78.

    CAS  Google Scholar 

  • Pomeroy, R.D. 1982. Biological treatment of odorous air. J. WPCF. 54: 1541–1545. Pomeroy, R.D. 1963. Controlling sewage plant odors. Consult. Eng. 20: 101–104.

    Google Scholar 

  • Ritchie, B.J. and Hill, G.A. 1995. Biodegradation of phenol-polluted air using an external loop airlift bioreactor. J. Chem. Technol. Biotechnol. 62: 339–344.

    Google Scholar 

  • Roberts, P.V. and Dandliker, P.G. 1983. Mass transfer of volatile organic contaminants from aqueous solution to the atmosphere during surface aeration. Environ. Sci. Technol. 17: 484–489.

    Google Scholar 

  • Roberts, P.V., Munz, C. and Dandliker, P. 1984. Modeling volatile organic solute removal by surface and bubble aeration. J. WPCF. 56: 157–164.

    CAS  Google Scholar 

  • Roberts, P.V., Hopkins, G.D., Munz, C. and Rojas, A.H. 1985. Evaluating two-resistance models for air stripping of volatile organic contaminants in a countercurrent, packed column. Environ. Sci. Technol. 19: 164–172.

    Google Scholar 

  • Romain, M. 1996. M.S. Thesis. University of Washington. Seattle, WA, USA.

    Google Scholar 

  • Ryckman-Siegwarth, J. and Pincince, A.B. 1992. Use of aeration tanks to control emissions from wastewater treatment plants. In: Proceedings of the 6515 Annual Conference of the Water Environment Federation, 10: 11–22.

    Google Scholar 

  • Shields, M.S., Reagin, M.J., Gerger, R.R., Somerville, C., Schaubhut, R., Campbell, R. and Hu-Primmer, J. 1993. Constitutive degradation of TCE by an altered bacterium in a gas phase reactor. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. R.E. Hinchee, A. Leeson, L. Semprini and S.K. Ong (Eds.). Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Sklandany, G.J., Deshusses, M.A., Devinny, J.S., Togna, A.P., and Webster, T.S. 1998. Biological systems: Biofilters. In: Odor and VOC control handbook. H.J. Rafson (Ed.). McGraw-Hill, New York, USA.

    Google Scholar 

  • Speitel, G.E. and McLay, D.S. 1993. Biofilm reactors for treatment of gas streams containing chlorinated solvents. J. Environ. Eng. 119: 658–678.

    Google Scholar 

  • Stensel, H.D. and Bielefeldt, A.R. 1999. A device and method for removal of gas contaminants through a shallow sparged bioreactor. U.S. Patent No. 5985649, Issued Nov. 16, 1999.

    Google Scholar 

  • Stillwell, S.A., Hans, D.E., and Katen, P.C. 1994. Biological scrubbing of foul air in activated sludge treatment reduces odors and ROGs from headworks and primary clarifiers. In: Proceedings - Odor and VOC emission control for municipal and industrial wastewater treatment facilities. Alexandria, VA. Water Environment Federation.

    Google Scholar 

  • Sublette, K.L. and Sylvester, N.D. 1987. Oxidation of hydrogen sulfide by Thiobacillus denitriftcans: desulfurization of natural gas. Biotechnol. Bioeng. 19: 249–257.

    Google Scholar 

  • Torres, E.M., Devinny, J., Basrai, S.S, Carlson, L.J., Gossett, R., Kogan, V., Ahn, T., Kardos, D., Shao, J., Webster, T. and Stolin, B. 1997. Biofiltration: controlling air emissions through innovative technology. Water Environment Research Foundation, USA.

    Google Scholar 

  • Tewari, P.K. and Bewtra, J.K. 1982. Alpha and beta factors for domestic wastewater. J. WPCF. 54: 1281–1287.

    CAS  Google Scholar 

  • Torres, E.M., Devinny, J., Basrai, S.S, Carlson, L.J., Gossett, R., Kogan, V., Ahn, T., Kardos, D., Shao, J., Webster, T. and Stolin, B. 1997. Biofiltration: controlling air emissions through innovative technology. Water Environment Research Foundation, USA.

    Google Scholar 

  • U.S. EPA. 1989. Design manual: fine pore aeration systems. Office of Research and Development. Cincinnati, OH. 625/1–89; 023.

    Google Scholar 

  • Vaderberg-Twary, L., Steenhoudt, K., Travis, B.J., Hanners, J.L., Foreman, T.M. and Brainard, J.R. 1997. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor. Biotechnol. Bioeng. 55: 163–169.

    Google Scholar 

  • Wei. V.Q., Hill, G.A. and Macdonald, D.G. 1999. Bioremediation of contaminated air using an external-loop airlift bioreactor. Can. J. Chem. Eng. 77: 955–962.

    Google Scholar 

  • Whitman, W.G. 1923. The two-film theory of absorption. Chem. Met. Eng. 29: 147. Williams, T.O. and Miller, F.C. 1992. Odor control using biofilters. Biocycle. 33: 72–77. Williams, T.O. and Miller, F.C. 1992. Biofilters and facility operations. Biocycle. 33: 75–79.

    Google Scholar 

  • Wu, G., Chabot, J.C., Caron, J.J. and Heitz, M. 1998. Biological elimination of volatile organic compounds from waste gases in a biofilter. Water Air Soil Poll. 101: 69–78.

    Article  CAS  Google Scholar 

  • Ye, L., Khandan, N.N., and Edwards, F.G. 1994. Biological treatment of airstreams contaminated with organic vapors. Water Sci. Technol. 30: 71–74.

    Google Scholar 

  • Zhu, H., Keener, T.C., Bishop, P.L., Orton, T.L., Wang, M. and Siddiqui, K.F. 1999. Aeration recirculation in air and high purity oxygen systems for control of VOC emissions from wastewater aeration basins. Environ. Prog. 18: 101–106.

    Google Scholar 

  • Zhu, H., Keener, T.C., Orton, T.L., Bishop, P.L., Khang, S.J. and Siddiqui, K. 1997. The effectiveness of aeration recirculation in controlling VOC emissions from publicly owned treatment works. J. Air Waste Manage. Assoc. 47: 1259–1267.

    Google Scholar 

  • Zuber, L., Dunn, I.J. and Deshusses, M.A. 1997. Comparative scale-up and cost estimation of a biological trickling filter and three-phase airlift bioreactor for the removal of methylene chloride from polluted air. J. Air Waste Manage. Assoc. 47: 969–975.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bielefeldt, A.R. (2001). Activated Sludge and Suspended Growth Bioreactors. In: Kennes, C., Veiga, M.C. (eds) Bioreactors for Waste Gas Treatment. Environmental Pollution, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0930-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0930-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5772-3

  • Online ISBN: 978-94-017-0930-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics