Skip to main content

Photophysical Reactions in Cells

  • Chapter

Abstract

The present report briefly summarises general principles of the interaction between solar radiation and living matter. In general, a photon flux can be used either as a carrier of different levels of information (enzyme activation, regulation of gene expression, photomorphogenesis, phototaxis, phototropism, process of vision) or of Gibbs energy as the driving force for biological processes. The main part of this contribution deals with the process of solar energy exploitation by water cleavage in oxygen evolving photosynthesising organisms. Special emphasis is paid to the adaptation to different illumination conditions by suitable antenna systems and the transformation of electronically excited states into electrochemical Gibbs energy by charge separation in the reaction centres. It is also shown that electron-hole recombination in the oxygen evolving Photosystem II leads to formation of the lowest excited singlet state of chlorophyll and radiative emission either as delayed luminescence or as thermoluminescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bemarding, J., Eckert, H.-J., Eichler, H.J., Napiwotzki, A. and Renger, G. (1994) Kinetic studies on the stabilisation of the primary radical pair P680+Pheô in different photosystem II preparations from higher plants. Photochem. Photobiol. 59, 566–573.

    Article  Google Scholar 

  • Bittner, T., Irrgang, K.-D., Renger, G. and Wasielewski, M.R. (1994) Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II in green plants. J. Phys. Chem. 98, 11821–11826.

    Article  Google Scholar 

  • Britt, R.D. (1996) Oxygen Evolution, in D.R. Ort and C.F. Yocum, C.F. (eds), Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, Dordrecht, pp. 137–164.

    Google Scholar 

  • Crofts, A.R. and Wraight, C.A. (1983) The electrochemical domain of photosynthesis. Biochim. Biophys. Acta. 726, 149–185.

    Article  Google Scholar 

  • Debus, R.J. (1992) The manganese and calcium ions in photosynthetic 02 evolution. Biochim. Biophys. Acta 1102, 269–352.

    Article  Google Scholar 

  • Diner, B.A. and Babcock, G.T. (1996) Structure, dynamics and energy conversion efficiency in photosystm 11, in D.R. Ort and C.F. Yocum (eds), Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, Dordrecht, pp. 213–247.

    Google Scholar 

  • Eckert, H.-J., Wiese, N., Bemarding, J., Eichler, H.J. and Renger, G. (1988) Analysis of the electron transfer from Pheo to QA in PS 11 membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett. 240, 153–158.

    Article  Google Scholar 

  • Förster, Th. (1948) Intermolecular energy transference and fluorescence. Annalen Physik 2, 55–75. [in German]

    Article  MATH  Google Scholar 

  • Förster, Th. (1965) Delocalised excitation and excitation transfer, in O. Sinanoglu (ed) Part iLB.I of Modern Quantum Chemistry: Istanbul Lectures. Part III, Action of Light and Organic Crystals, Academic Press, New York, pp 93–137.

    Google Scholar 

  • Freer, A., Prince, S., Sauer, K., Papiz, M., Hawthornwaite-Lawless, A., McDermott, G. and Cogdell, R. (1996) Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4, 449–462.

    Article  Google Scholar 

  • Gantt, E. (1986) Phycobilisomes, in L.A. Strachlin and C.J. Arntzen (eds) Photosynthetic membranes and light harvesting systems, Photosynthesis (II), Springer, Berlin, pp. 260–268.

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kantsky: Chlorophyll a Fluorescence. Aust. J. Plant Physiol 22, 131–160.

    Article  Google Scholar 

  • Graber, P. (1997) Bioenergetics, in P. Graber and G. Milazzo (eds) Biochemistry: Principles and Practice, Birkhäuser Verlag, Basel, Vol 4, pp 486–535.

    Google Scholar 

  • Gray, J.C. (1996) Regulation of expression of nuclear genes encoding polypeptides required for the light reactions of photosynthesis, in D.R. Ort and C.F. Yocum (eds), Oxygenic Photosynthesis: The light reactions, Kluwer Academic Publishers, pp. 621–641.

    Google Scholar 

  • Haag, E and Renger, G (1997) Chloroplasts, in P. Graber and G. Milazzo (eds), Treatise on Bioelectrochemistry, Vol. 2: Bioenergetics,Birkhäuser Verlag, Basel, pp. 212–273.

    Google Scholar 

  • Hader, D.-P. and Tevini, M. (1987) General Photobiology, Pergamon Press, Oxford.

    Google Scholar 

  • Hastings, J.W. (1986) Bioluminescence in bacteria and dinoflagellates, in Govindjee, J. Amesz and D.C. Fork (eds), Light emission by plants and bacteria, Academic Press, New York, pp. 363–398.

    Google Scholar 

  • Haumann, M. and Junge,W. (1996) Protons & charge indicators in oxygen evolution, in D.R. Ort, and C.F. Yocum (eds) Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, Dordrecht, pp. 165–192.

    Google Scholar 

  • Holzwarth, A.R. (1989) Applications of ultrafast laser spectroscopy for the study of biological systems. Quarterly Reviews of Biophysics 22, 239–326.

    Article  Google Scholar 

  • Horton, P., Ruban, A.V. and Walters, R.G. (1996) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Annu. Res. Plant Physiol. Plant Mol. Biol. 47, 655–684.

    Article  Google Scholar 

  • Inoue, Y. (1996) Photosynthetic thermoluminescence as a simple probe of photosystem II electron transport, in J. Amesz and A.J. Hoff (eds), Biophysical techniques in photosynthesis, Kluwer, Dordrecht, pp. 93107.

    Google Scholar 

  • Jansson, S. (1994) The light harvesting chlorophyll a/b-binding proteins. Biochim. Biophys. Acta 1184, I-19. Kühlbrandt, W. (1994) Structure and function of the plant light-harvesting complex, LHC II. Curr. Biol. 4, 519–528.

    Article  Google Scholar 

  • Lavergne, J. and Briantais, J.-M. (1996) Oxigenic Photosynthesis: The Light Reactions in C.A. Yocum and D.R. Ort (eds) Advances in Photosynthesis, Vol. 4, Kluwer Academic Publishers, Dordrecht, pp. 265–287.

    Google Scholar 

  • Lavorel, J. (1975) Luminescence, in Govindjee (ed) Bioenergetics of Photosynthesis, Academic Press, New York, pp. 223–317.

    Google Scholar 

  • McElroy, W.D. (1983) Bioluminescence, in W. Hoppe, W. Lohmann, H. Markl and H. Ziegler (eds), Biophysics, Springer, Berlin, pp. 559–569.

    Google Scholar 

  • Mullineaux, C.W., Pascal, A.A., Horton, P. and Holzwarth, A.R. (1993) Exciton-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim. Biophys. Acta, 1141, 23–28.

    Article  Google Scholar 

  • Paulsen, H. (1995) Chlorophyll a/b binding proteins. Photochem. Photobiol. 62, 367–382.

    Article  Google Scholar 

  • Popp, F.A., Li, K.H. and Gu, Q. (eds) (1992) Recent Advances in Biophoton Research and its Applications, World Scientific, Singapore.

    Google Scholar 

  • Renger, G (1983) Biological Energy Conservation, in W. Hoppe, W. Lohmann, H. Markl and H. Ziegler (eds.), Biophysics, Springer, Berlin, pp. 347–371.

    Google Scholar 

  • Renger, G. (1992) Energy transfer and trapping in Photosystem II, in J. Barber (ed), Topics in Photosynthesis The Photosystems: Structure Function and Molecular Biology,Elsevier, Amsterdam, pp. 45–99.

    Google Scholar 

  • Renger, G. (1993) Water cleavage by solar radiation - an inspiring challenge of photosynthesis research Photosynth. Res. 38 229–247.

    Article  Google Scholar 

  • Renger, G. (1997) Mechanistic and structural aspects of photosynthetic water oxidation. Physiol. Plant. 100, 828–841.

    Article  MathSciNet  Google Scholar 

  • Renger, G. and Schreiber, U. (1986) Practical applications of fluorometric methods to algae and higher plants, in D.C. Fork, Govindjee and J. Amesz. (eds), Light Emission by Plants and Bacteria, Academic Press, New York, pp. 587–619.

    Google Scholar 

  • Renger, G., Eckert, H.-J., Bergmann, A., Bemarding, J., Liu, B., Napiwotzki, A., Reifarth, F. and Eichler, H.J. (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants. Austr. J Plant Physiol., 22, 167–181.

    Article  Google Scholar 

  • Rutherford,.A.W., Zimmermann, J.-L. and Boussac, A. (1992) Oxygen evolution, in J. Barber (ed), The Photosystems: Structure Function and Molecular Biology,Elsevier, Amsterdam, pp 179–229.

    Google Scholar 

  • Schatz, G., Brock, H. and Holzwarth, A.R. (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophysical Journal 54 397–405.

    Article  ADS  Google Scholar 

  • Schödel, R., Hillman, F., Schrötter, T., Voigt, J., Irrgang, K.-D. and Renger, G. (1996) Kinetics of excited states of pigment clusters in solubilized LHCII: Photon density dependent fluorescence yield and transmission. Biophysical Journal 71, 3370–3380.

    Article  ADS  Google Scholar 

  • Siefermann-Harms, D. (1987) The light harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant 69, 561–568.

    Article  Google Scholar 

  • Stieve, H. (1983) Photoreception and its Molecular Basis, in W. Hoppe, W. Lohmann, H. Markt and H. Ziegler (eds) Biophysics, Springer, Berlin, pp. 709–729.

    Google Scholar 

  • Vasil’ev, S., Bergmann, A., Redlin, H., Eichler, H.J. and Renger, G. (1996) On the role of exchangeable hydrogen bonds for the kinetics of P680+• Q−•A recombination in Photosystem II. Biochim. Biophys. Acta 1276 35–44.

    Google Scholar 

  • Vasil’ev, S., Irrgang, K.-D., Schrötter, T., Bergmann, A., Eichler, H.J. and Renger, G (1997) Quenching of chlorophyll a fluorescence in the aggregates of LHCII: steady state fluorescence and picosecond relaxation kinetics. Biochemistry 36, 7503–7512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Renger, G. (1998). Photophysical Reactions in Cells. In: Chang, JJ., Fisch, J., Popp, FA. (eds) Biophotons. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0928-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0928-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5033-5

  • Online ISBN: 978-94-017-0928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics