Skip to main content

Pharmaceutical gene medicines for non-viral gene therapy

  • Chapter
Biopharmaceuticals, an Industrial Perspective
  • 611 Accesses

Abstract

Gene therapy entails the introduction of a selected gene into a specific somatic cell such that subsequent expression of the gene achieves a therapeutic goal. One of the technical challenges to developing successful gene therapy protocols remains the development of safe and effective gene delivery systems. This chapter focuses upon the many non-viral approaches to achieving target-specific gene delivery. After discussing plasmid-based gene medicines and their manufacture, lipid-, polymer- and polypeptide-based gene delivery systems are presented in detail. A selected review of clinical trials undertaken using non-viral delivery systems is then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W.F. (1992). Human Gene Therapy. Science, 256, 808–813.

    Article  CAS  Google Scholar 

  2. Ledley, F.D. (1993a). Are contempory methods for somatic gene therapy suitable for clinical applications? Clinical Investigative Medicine, 16, 78–88.

    CAS  Google Scholar 

  3. Ledley, F.D. (1993b). Hepatic gene therapy: Present and future. Hepatology, 18, 263–273.

    Article  Google Scholar 

  4. Ledley, F.D. (1994a). Development in somatic gene therapy. Exp. Op. Invest. Drugs, 3, 913–921.

    Article  Google Scholar 

  5. Ledley, F.D. (1994b). Non-viral gene therapies. Current Opinion in Biotechnology, 5, 626–636.

    Article  CAS  Google Scholar 

  6. Anderson, W.F. (1995). Gene Therapy. Scientific American, 124–128.

    Google Scholar 

  7. Rolland, A.P. (1998). From genes to gene medicines: Recent advances in nonviral gene delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 15 (2), 143–198.

    Article  CAS  Google Scholar 

  8. Blaese, R.M. et al. (1995). T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years, Science, 270, 475.

    Article  CAS  Google Scholar 

  9. Miller, A.D. (1992). Human gene therapy comes of age. Nature, 357, 455–460.

    Article  CAS  Google Scholar 

  10. Kay, M.A. et al. (1993). In vivo gene therapy of hemophilia B: Sustained partial correction in factor IX-deficient dogs. Science, 262, 117–119.

    Article  Google Scholar 

  11. Culver, K.W. and Blaese, R.M. (1994). Gene therapy for adenosine deaminase deficiency and malignant solid tumors. In: Wolff, J.A., Ed., Birkhauser, Boston, Gene Therapeutics: Methods and Applications of Direct Gene Transfer, 263–280.

    Google Scholar 

  12. Ledley, F.D. (1995) Nonviral gene therapy: The promise of genes as pharmaceutical products. Human Gene Therapy, 6, 1129–1144.

    Article  CAS  Google Scholar 

  13. Knowles, M.R. et al. (1995). A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. New England Journal of Medicine, 333, 823–831.

    Article  CAS  Google Scholar 

  14. Mendell, J.R. et al. (1995). Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. New England Journal of Medicine 333, 832–838.

    Article  CAS  Google Scholar 

  15. Rolland, A. and Tomlinson, E. (1996). Controllable gene therapy using non-viral systems, in gene therapy and artificial self-assembling systems for gene transfer, In: Feigner, P., Heller, M., Lehn, P., Behr, J-P., and Szoka, F.C., Jr. (eds.). ACS Books, Washington.

    Google Scholar 

  16. Tomlinson, E. and Rolland, A., (1996). Controllable gene therapy: Pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 39, 357–372.

    Google Scholar 

  17. Coleman, M.E. et al. (1994). Regulatory elements of the chick a-skeletal actin gene direct high level and tissue specific Development. Journal of Cell Biochemistry W25.

    Google Scholar 

  18. Ledley, F.D. and Ledley, T.S. (1998). Pharmacokinetic considerations in somatic gene therapy. Advanced Drug Delivery Reviews, 30, 133–150.

    Article  CAS  Google Scholar 

  19. Wolff, J.A. et al. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468.

    Article  CAS  Google Scholar 

  20. Wolff, J.A. et al. (1992a). Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. Journal of Cell Science, 103, 1249–1269.

    CAS  Google Scholar 

  21. Wolff, J.A. et al. (1992b). Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Human Molecular Genetics, 1, 363–369.

    Article  CAS  Google Scholar 

  22. Lin, H. et al. (1990). Expression of recombinant genes in myocardium in vivo after direct injection of DNA, Circulation, 82, 2217–2221.

    Article  CAS  Google Scholar 

  23. Hickman, M.A. et al. (1994). Gene expression following direct injection of DNA into liver. Human Gene Therapy, 5, 1477–1483.

    Article  CAS  Google Scholar 

  24. Kawabata, K. et al. (1995). The fate of plasmid DNA after intravenous injection in mice: Involvement of scavenger receptors in its hepatic uptake. Pharmaceutical Research 12, 825–30.

    Google Scholar 

  25. Riessen, R. et al. (1993). Arterial gene transfer using pure DNA applied directly to a hydrogel-coated angioplasty balloon. Human Gene Therapy, 4, 749–758.

    Article  CAS  Google Scholar 

  26. Ulmer, J.B. et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 259, 1745–1749.

    Article  CAS  Google Scholar 

  27. Sikes, M. et al. (1994). In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection, Human Gene Therapy, 5, 837–844.

    Article  CAS  Google Scholar 

  28. Meyer, K.B. et al. (1995). Intertracheal gene delivery to the mouse airway: Characterization of plasmid DNA expression and pharmacokinetics. Gene Therapy, 2, 450.

    Google Scholar 

  29. Rolland, A.P. (1996). Controllable gene therapy: Recent advances in non-viral gene delivery. In: Targeting of Drugs 5: Strategies for Oligonucleotide and Gene Delivery in Therapy. Gregoriadis and McCormack (Ed.), Plenum Press, New York, 79–95.

    Google Scholar 

  30. Mumper, R.J. et al. ( 1995b). Interactive polymeric gene delivery systems for enhanced muscle expression. Pharmaceutical Research, 12, 80.

    Google Scholar 

  31. Mumper, R.J. et al. (1996). Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharmaceutical Research, 13, 701–709.

    Article  CAS  Google Scholar 

  32. Mumper, R.J. et al. (1998). Protective interactive noncondensing ( PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. Journal of Controlled Release, 52, 191–203.

    Google Scholar 

  33. Mumper, R.J. and Rolland, A.P. (1998). Plasmid delivery to muscle: Recent advances in polymer delivery systems. Advanced Drug Delivery Reviews, 30, 151–172.

    Article  Google Scholar 

  34. Tsan, M-F. et al. (1995). Lung-specific direct in vivo gene transfer with recombinant plasmid DNA. American Journal of Physiology, 268 (Lung Cell. Mol. Physiol. 12), L1052–L1056.

    CAS  Google Scholar 

  35. Hartikka, J. et al. (1996). An improved plasmid DNA expression vector for direct injection into skeletal muscle. VR1012 constuction. Human Gene Therapy, 7, 12051217.

    Google Scholar 

  36. Tanner, F.C. et al. (1997). Transfection of human endothelial cells. Cardiovascular Research, 35, 522–528.

    Article  CAS  Google Scholar 

  37. Yew, N.S. et al. (1997). Optimization of plasmid vectors for high-level expression in lung epithelial cells. Human Gene Therapy, 8, 575–84.

    Article  CAS  Google Scholar 

  38. Challita, P.M. and Kohn, D.B. (1994). Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proceedings of the National Academy of Science 91, 2567–2571.

    Article  CAS  Google Scholar 

  39. Rettinger, S.D. et al. (1994). Liver-directed gene therapy: Quantitative evaluation of promoter elements by using in vivo retroviral transduction. Proceedings of the National Academy of Science, 91, 1460–1464.

    Article  CAS  Google Scholar 

  40. Loser, P. et al. (1998). Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: Involvement of NFkappaB. Journal of Virology, 72, 180–190.

    Google Scholar 

  41. May, M.J. and Ghosh, S. (1997). Rel/NF-kappa B and I kappa B proteins: An overview. Seminars in Cancer Biology, 8, 63–73.

    Article  CAS  Google Scholar 

  42. Harms, J.S. and Splitter, G.A. (1995). Interferon-(inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Human Gene Therapy, 6, 1291–1297.

    Article  CAS  Google Scholar 

  43. Gribaudo, G. et al. (1995). Interferon-a inhibits the murine cytomegalovirus immediate-early gene expression by down-regulating NF-kB activity. Virology, 211, 251–260.

    Article  CAS  Google Scholar 

  44. Qin, L. et al. (1997). Promoter attentuation in gene therapy: Interferon-y and tumor necrosis factor-a inhibit transgene expression. Human Gene Therapy, 8, 2019–2029.

    Article  Google Scholar 

  45. Freimark, B.D. et al. (1998). Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid. Cationic lipid complexes, 160, 4580–4586.

    Google Scholar 

  46. Coleman, M.E. et al. (1995). Myogenic vector expression of insulin-like growth factor-I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry, 270, 12109–12116.

    Article  CAS  Google Scholar 

  47. Anwer, K. et al. (1998). Systemic effect of human growth hormone after intramuscular injection of a single dose of a muscle-specific gene medicine. Humane Gene Therapy, 9, 659–670.

    Article  CAS  Google Scholar 

  48. Manthorpe, M. et al. (1993). Gene therapy by intramuscular injection of plasmid DNA; studies on firefly luciferase gene expression in mice. Human Gene Therapy, 4, 419–431.

    Google Scholar 

  49. Molkentin, J.D. and Olson, E.N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proceedings of the National Academy of Sciences, 93, 9366–9373.

    Article  CAS  Google Scholar 

  50. Wu, G.Y. et al. (1991). Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. Journal of Biological Chemistry, 266, 14338–14342.

    CAS  Google Scholar 

  51. Ferkol, T. et al. (1993). Regulation of the phosphoenolpyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer. FASEB Journal, 7, 1081–1091.

    CAS  Google Scholar 

  52. Walther, W. and Stein, U. (1996). Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. Journal of Molecular Medicine, 74, 379–92.

    Article  CAS  Google Scholar 

  53. Kozak, M. (1997). Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO Journal, 16, 2482–2492.

    Article  CAS  Google Scholar 

  54. Jansen, M. et al. (1995). Translational control of gene expression. Pediatric. Research, 37, 681–686.

    Google Scholar 

  55. Wickens, M. et al. (1997). Life and death in the cytoplasm: Messages from the 3’ end. Current Opinion in Genetic Development, 7, 220–232.

    Article  CAS  Google Scholar 

  56. Alila, H.A. et al. (1997). Expression of a biologically active human insulin-like growth factor-I following intramuscular injection of a formulated plasmid in rats. Human Gene Therapy, 8, 1785–1795.

    Article  CAS  Google Scholar 

  57. Donnelly, J.J. et al. (1993). The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. Journal of Virology, 67, 5062–5067.

    Google Scholar 

  58. Conry, R.M. et al. (1996). Selected strategies to augment polynucleotide immunization. Gene Therapy, 3, 67–74.

    CAS  Google Scholar 

  59. Lew, D. et al. (1995). Cancer gene therapy using plasmid DNA: Pharmacokinetic study of DNA following injection in mice. Human Gene Therapy, 6, 553–564.

    Google Scholar 

  60. Rubin, J. et a. (1997) Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Therapy, 4, 419–425.

    Article  CAS  Google Scholar 

  61. Doh, S.G. et al.. (1997). Spatial-temporal patterns of gene expression in mouse skeletal muscle after injection of lacZ plasmid DNA. Gene Therapy, 4, 648–663.

    Google Scholar 

  62. Chiang, C.M. et al. (1992). Viral El and E2 proteins support replication of homologous and heterologous papilloma viral origins. Proceedings of the National Academy of Sciences USA, 89, 5799–5803.

    Article  CAS  Google Scholar 

  63. Thierry, A.R et al. (1995). Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proceedings of the National Academy of Sciences USA, 92, 9742–9746.

    Article  CAS  Google Scholar 

  64. Cooper, M.J. et al. (1997). Safety-modified episomal vectors for human gene therapy. Proceedings of the National Academy of Sciences USA, 94, 6450–6455.

    Article  CAS  Google Scholar 

  65. Calos, M.P. (1996). The potential of extrachromosomal replicating vectors for gene therapy. Trends Genetic, 12 (11), 463–466.

    Article  CAS  Google Scholar 

  66. Liang, X. et al. (1996). Novel, high expressing and antibiotic-controlled plasmid vectors designed for use in gene therapy. Gene Therapy, 3, 350–356.

    CAS  Google Scholar 

  67. Rivera, V.M. et al. (1996). A humanized system for pharmacologic control of gene expression. Nature Medicine, 2, 1028–1032.

    Article  CAS  Google Scholar 

  68. Liberles, S.D. et al. (1997). Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proceedings of the National Academy of Sciences, USA, 94, 7825–7830.

    Google Scholar 

  69. Vegeto, E. et al. (1992). The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell, 69, 703–713.

    Article  CAS  Google Scholar 

  70. Wang, Y. et al. (1994). A regulatory system for use in gene transfer. Proceedings of the National Academy of Sciences, USA, 91, 8180–8184.

    Google Scholar 

  71. Wang, Y. et al. (1997b). Positive and negative regulation of gene expressin in eukaryotic cells with an inducible transcriptional regulator. Gene Therapy, 4, 432–441.

    Article  CAS  Google Scholar 

  72. Wang, Y. et al. (1997a). Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnology, 15, 239–243.

    Article  CAS  Google Scholar 

  73. Hines, R.N. et al. (1992). Large-scale purification of plasmid DNA by anion-exchange high-performance liquid chromatography. Biotechniques, 12, 430–434.

    CAS  Google Scholar 

  74. Horn, N.A. et al. (1995). Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Human Gene Therapy, 6, 565–573.

    Article  CAS  Google Scholar 

  75. Wils, P. et al. (1997). Efficient purification of plasmid DNA for gene transfer using triple-helix affinity chromatography. Gene Therapy, 4, 323–330.

    Article  CAS  Google Scholar 

  76. Fraley, R. et al. (1981). Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry, 20, 6978–6987.

    Article  CAS  Google Scholar 

  77. Wang, C.Y. and Huang, L. (1987). pH-sensitive immunoliposomes mediate target-cellspecific delivery and controlled expression of a foreign gene in mouse. Proceedings of the Naional Academy of Sciences, USA, 84, 7851–7855.

    Article  Google Scholar 

  78. Soriano, P. et al. (1983). Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene. Proceedings of the National Academy of Sciences, USA, 80, 7128–7131.

    Article  Google Scholar 

  79. Alino, S.F. et al. (Human cd-antitrypsin gene transfer to in vivo mouse hepatocytes. Human Gene Therapy, 7, 531–536.

    Google Scholar 

  80. Feigner, P.L. et al. (1987). Lipofedction: a highly efficient, lipid-mediated DNAtransfection procedure. Proceedings of the National Academy of Sciences, USA, 84, 7413–7417.

    Article  Google Scholar 

  81. Behr, J.P. et al. (1989). Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proceedings of the National Academy of Sciences, USA, 86, 6982–6986.

    Article  CAS  Google Scholar 

  82. Brigham, K.L. et al. (1989). Rapid communication: in vivo transfeciton of murine lungs with a functioning prokaryotic gene using a liposome vehicle. American Journal of Medical Science, 298, 278–281.

    Article  CAS  Google Scholar 

  83. Hofland, H.E. et al. (1997). In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharmaceutical Research, 14 (6), 742–749.

    Article  CAS  Google Scholar 

  84. Oudrhiri, N. et al. (1997). Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo. Proceedings of the National Academy of Sciences, USA, 4, 94 (5), 1651–1656.

    Article  CAS  Google Scholar 

  85. Eastman, S.J. et al. (1997). Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complexes. Human Gene Therapy, 8 (3), 313–322.

    Article  CAS  Google Scholar 

  86. Yonemitsu, Y. et al. (1997) HVJ (Sendai virus)-cationic liposomes: a novel and potentially effective liposome-mediated technique for gene transfer to the airway epithelium. Gene Therapy, 4 (7), 631–638.

    Article  CAS  Google Scholar 

  87. McLachlan, G. et al. (1996). Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Therapy, 3 (12), 1113–1123.

    CAS  Google Scholar 

  88. Zhu, N. et al. (1993). Systemic gene experssion after intravenous DNA delivery into adult mice. Science, 261, 209–211.

    Article  CAS  Google Scholar 

  89. Li, S. and Huang, L. (1997). In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Therapy, 4 (9), 891–900.

    Article  CAS  Google Scholar 

  90. Song, Y.K. et al. (1997). Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Human Gene Therapy, 1, 8 (13), 1585–1594.

    Article  CAS  Google Scholar 

  91. Hong, K. et al. (1997). Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Letters, 400 (2), 233–237.

    Article  CAS  Google Scholar 

  92. Templeton, N.S. et al. (1997). Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nature Biotechnology, 15 (7), 647–652.

    Article  CAS  Google Scholar 

  93. Liu, Y. et al. (1995). Cationic liposome-mediated intravenous gene delivery. Journal of Biological Chemistry, 270 (42), 24864–24870.

    Article  CAS  Google Scholar 

  94. Koch G. and Bishop J.M. (1968). The effect of polycations on the interaction of viral RNA with mammalian cells: studies on the infectivity of single and double-stranded poliovirus RNA. Virology, 35, 9–17.

    Article  CAS  Google Scholar 

  95. Wu, G.Y. et al. (1994). Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. Journal of Biological Chemistry, 269 (15), 11542–11546.

    CAS  Google Scholar 

  96. Ferkol, T. et al. (1995). Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. Journal of Clinical Investigation, 95, 493–502.

    Article  CAS  Google Scholar 

  97. Wu, G.Y. and Wu, C.H. (1987). Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. Journal of Biological Chemistry, 262, 4429–4432.

    CAS  Google Scholar 

  98. Wu, G. Y. and Wu, C.H. (1988). Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry, 27, 887–892.

    Article  CAS  Google Scholar 

  99. Wu, G.Y. and Wu, C.H. (1988a). Receptor-mediated gene delivery and expression in vivo. Journal of Biological Chemistry, 263, 14621–14624.

    CAS  Google Scholar 

  100. Martinez-Fong, D. et al. (1994). Nonenzymatic glycosylation of poly-L-lysine: a new tool for targeted gene delivery. Hepatology, 20, 1602–1608.

    Article  CAS  Google Scholar 

  101. Mislick, K.A. et al. (1995). Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjugate Chemistry, 6, 512–515.

    Article  CAS  Google Scholar 

  102. Foster, B.J. and Kern, J.A. (1997). HER2-targeted gene transfer. Human Gene Therapy, 8, 719–727.

    Article  CAS  Google Scholar 

  103. Harbottle, R.P. et al. (1998). An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Human Gene Therapy, 9, 1037–1047.

    Article  CAS  Google Scholar 

  104. Trubetskoy, V.S. et al. (1992). Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)antibody conjugate in mouse lung endothelial cells. Biochimica et Biophysica Acta-Gene Structure and Expression, 15, 1131 (3), 311–313.

    Article  CAS  Google Scholar 

  105. Feero, W.G. et al. (1997). Selection and use of ligands for receptor-mediated gene delivery to myogenic cells. Gene Therapy, 4, 664–674.

    Article  CAS  Google Scholar 

  106. Abdallah, B. et al. (1996). A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Human Gene Therapy, 7, 1947–1954.

    Article  CAS  Google Scholar 

  107. Boletta, A. et al. (1997). Human Gene Therapy, 8, 1243–1251.

    Article  CAS  Google Scholar 

  108. Boussif, O. et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences, USA, 92, 7297–7301.

    Google Scholar 

  109. Baker, A. et al. (1997). Polyethylenimine ( PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Therapy, 4, 773–782.

    Google Scholar 

  110. Ferrari, S. et al. (1997). ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Therapy, 4, 1100–1106.

    Article  CAS  Google Scholar 

  111. Zanta, M.A. et al. (1997). In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chemistry, 8 (6), 839–844.

    Article  CAS  Google Scholar 

  112. Kircheis, R. et al. (1997). Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Therapy, 4, 409–418.

    Article  CAS  Google Scholar 

  113. Kukowska-Latallo, J.F. et al. (1996). Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proceedings of the National Academy of Sciences, 93, 4897–4902.

    Article  CAS  Google Scholar 

  114. Tang, M.X. et al. (1996). In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chemistry, 7, 703–714.

    Article  CAS  Google Scholar 

  115. Maruyama, A. et al. (1997). Poly(L-lysine)-graft-dextran copolymer is a novel stabilizer of triplex DNA (I): stabilization of poly(dA).2poly(dT)triplex. Nucleic Acids Symposium Service, 37, 225–226.

    CAS  Google Scholar 

  116. Baumgartner, I. et al. (1998). Constitutive expression ofphVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation, 97, 1114–1123.

    Article  CAS  Google Scholar 

  117. Brigham, K. Abstract in Proceedings of the American Thoracic Society Annual Meeting, April 28, 1998, Chicago, Ill. (submitted to Nature Medicine).

    Google Scholar 

  118. Rommens, J.M. et al. (1989). Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science, 245, 1059–65.

    Google Scholar 

  119. Riordan, J.R. et al. (1989). Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science, 245, 1066–73.

    Google Scholar 

  120. Kerem, B-S. et al. (1989). Identification of the cystic fibrosis gene: Genetic analysis. Science, 245, 1073–80.

    Google Scholar 

  121. Rosenfeld, M.A. et al. (1992). In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell, 68, 143155.

    Google Scholar 

  122. Alton, E.W.F.W. et al. (1993). Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nature Genetics, 5, 135–142.

    Article  CAS  Google Scholar 

  123. Hyde, S.C. et al. (1993). Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature, 362, 250–255.

    Article  CAS  Google Scholar 

  124. McLachlan, G. et al. (1996). Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CF’l’R-DOTAP. Gene Therapy, 3, 1113–1123.

    CAS  Google Scholar 

  125. Porteous, D.J. et al. (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis.Gene Therapy, 4 (3), 210–218.

    CAS  Google Scholar 

  126. Caplan, N.J. et al.. (1995). Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Medicine, 1, 39–46.

    Google Scholar 

  127. Crystal, R.G. (1995) The gene as the drug. Nature Medicine, Volume 1, Number 1.

    Google Scholar 

  128. Wagner, J.A. and Gardner, P. (1997). Toward cystic fibrosis gene therapy. Annual Review of Medicine, 48, 203–16.

    Article  CAS  Google Scholar 

  129. Freimark, B.D. et al. (1998). Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. Journal of Immunology, 160, 4580–4586.

    CAS  Google Scholar 

  130. Nabel, G.J. et al.. (1993). Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proceedings of the National Academy of Sciences, USA, 90, 11307–11311.

    Google Scholar 

  131. Nabel, G.J. et al. (1996). Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proceedings of the National Academy of Sciences, USA, 93, 15388–15393.

    Google Scholar 

  132. Stopeck, A.T. et al. (1997). Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. Journal of Clinical Oncology, 15, (1), 341–349.

    CAS  Google Scholar 

  133. Rubin, J. et al. (1997). Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Therapy, 4, 419–425.

    Article  CAS  Google Scholar 

  134. Nabel, E.G. et al. (1994). Safety and toxicity of catheter gene delivery to the pulmonary vasculature in a patient with metastatic melanoma. Human Gene Therapy, 5, 1089–1094.

    Article  CAS  Google Scholar 

  135. Murray, J.L. (1998). Proceedings of American Society of Clinical Oncology Meeting, Los Angeles.

    Google Scholar 

  136. Marchand, M. et al. (1995). Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. International Journal of Cancer, 63(6), 883885.

    Google Scholar 

  137. Tabata, H. et al. (1997). Cardiovascular Research, 35 (3), 470–479.

    Article  CAS  Google Scholar 

  138. Tsurumi, Y. et al. (1997). Arterial gene transfer of acidic fibroblast growth factor for therapeutic angiogenesis in vivo: critical role of secretion signal in use of naked DNA.Circulation, 96(9 Suppl), II-113828.

    Google Scholar 

  139. Isner, J.M. et al. (1996). Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet, 348 (9024), 370–4.

    Article  CAS  Google Scholar 

  140. Orkin, S.H. and Motulsky, A.G. (1995). Report and Recommendations of the Panel to Assess the NIH Investment in Research on Gene Therapy.

    Google Scholar 

  141. Vile, R.G. (1996). Gene therapy for cancer, the course ahead. Cancer and Metastasis Reviews, 15, 403–410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rolland, A., Sullivan, S., Petrak, K. (1999). Pharmaceutical gene medicines for non-viral gene therapy. In: Walsh, G., Murphy, B. (eds) Biopharmaceuticals, an Industrial Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0926-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0926-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5237-7

  • Online ISBN: 978-94-017-0926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics