Skip to main content

Multiplicity of stable states in freshwater systems

  • Conference paper
Biomanipulation Tool for Water Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 61))

Abstract

It is shown with the use of minimal models that several ecological relationships in freshwater systems potentially give rise to the existence of alternative equilibria over a certain range of nutrient values. The existence of alternative stable states has some implications for the management of such systems. An important consequence is that signs of eutrophication are only apparent after the occurrence of changes that are very difficult to reverse. Reduction of the nutrient level as a measure to restore such systems gives poor results, but biomanipulation as an additional measure can have significant effects, provided that the nutrient level has been reduced enough to allow the existence of a stable alternative clear water equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. M., 1981. Population ecology of infectious disease agents. In R. M. May (ed.), Theoretical Ecology. Blackwell, Oxford: 318–356.

    Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg, C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Benndorf, J., H. Kneschke, 1984. Manipulation of the pelagic food-web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Google Scholar 

  • Crivelli, A. J., 1983. The destruction of aquatic vegetation by carp. Hydrobiologia 106: 37–41.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Gatto, M., S. Rinaldi, 1987. Some methods of catastrophic behaviour in exploited forests. Vegetation 69: 213–222.

    Article  Google Scholar 

  • Gerking, S. D. (ed), 1978. Ecology of Freshwater Fish Production, Blackwell, London, 520 pp.

    Google Scholar 

  • Grimm, M. P., 1989. Northern pike (Esox lucius L.) and aquatic vegetation, tools in the management of fisheries and water quality in shallow waters. Hydrobiol. Bull. 23: 59–67.

    Google Scholar 

  • Holt, R. D., 1977. Predation, apparent competition, and the structure of prey communities. Theoret. Population Biol. 12: 197–229.

    Google Scholar 

  • Hosper, S. H., 1989. Biomanipulation, new perspective for restoring shallow, eutrophic lakes in The Netherlands. Hydrobiol. Bull. 23: 5–11.

    Google Scholar 

  • Lazarro, X., 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities and impacts. Hydrobiologia 146: 97–167.

    Article  Google Scholar 

  • Ludwig, D., D. D. Jones a C. S. Holling, 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. anim. Ecol. 47: 315–332.

    Google Scholar 

  • May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.

    Article  Google Scholar 

  • May, R. M., 1981. Models for two interacting populations. In: R. M. May (ed), Theoretical ecology. Blackwell, Oxford: 78–105.

    Google Scholar 

  • Meijer, M.-L., M. W. de Haan, A. W. Breukelaar, H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 201 /202: 303–315.

    Article  Google Scholar 

  • Moss, B., H. Balls, I. Booker, K. Manson, M. Timms, 1984. The River Bure, United Kingdom: patterns of change in chemistry and phytoplankton in a slow-fertile river. Verh. int. Ver. Limnol. 22: 1959–1964.

    Google Scholar 

  • Noy-Meir, I., 1975. Stability of grazing systems: an application of predator-prey graphs. J. Ecol. 63: 459–483.

    Article  Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Arruda, P. Niemela, 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118: 240–261.

    Google Scholar 

  • Rosenzweig, M. L., 1971. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171: 385–387.

    Google Scholar 

  • Rosenzweig, M. L., 1973. Exploitation in three trophic levels. Am. Nat. 107: 275–294.

    Google Scholar 

  • Rosenzweig, M. L., R. H. MacArthur, 1963. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 895: 209–223.

    Google Scholar 

  • Scheffer, M., submitted. Fish and nutrients interplay deter- mines algal biomass: a minimal model. Limnol. Oceanogr.

    Google Scholar 

  • Scheffer, M., 1989. Alternative stable states in eutrophic shallow freshwater systems: a minimal model. Hydrobiol. Bull. 23: 73–85.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. In A. Macfayden, E. D. Ford (eds.), Advances in ecological research, Volume 12. Academic Press, London: 37–125.

    Chapter  Google Scholar 

  • Ten Winkel, E. H., J. T. Meulemans, 1984. Effects of cyprinid fish on submerges vegetation. Hydrobiol. Bull. 18: 157–158.

    Google Scholar 

  • Thom, R., 1975. Structural stability and morphogenesis; an outline of a general theory of models. Benjamin, Reading, MA.

    Google Scholar 

  • Timms, R. M., B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol Oceanogr. 29: 472–486.

    Article  Google Scholar 

  • Van Donk, E., R. D. Gulati, M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–35.

    Google Scholar 

  • Wium-Andersen, S., 1987. Allelopathy among aquatic plants, Arch. Hydrobiol. Beih. 27: 167–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scheffer, M. (1990). Multiplicity of stable states in freshwater systems. In: Gulati, R.D., Lammens, E.H.R.R., Meijer, ML., van Donk, E. (eds) Biomanipulation Tool for Water Management. Developments in Hydrobiology, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0924-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0924-8_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4074-9

  • Online ISBN: 978-94-017-0924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics