Skip to main content

Applicability of planktonic biomanipulation for managing eutrophication in the subtropics

  • Conference paper
Biomanipulation Tool for Water Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 61))

Abstract

Although large-bodied cladocerans such as Daphnia can reduce algal biomass significantly in temperate lakes if freed from fish predation, the applicability of such biomanipulation techniques for eutrophication management in the subtropics and tropics has been examined only recently. Subtropical cladoceran assemblages differ from those of temperate lakes by their low species richness, early summer gameogenesis, and greatly reduced body size. Eutrophic Florida lakes are dominated by pump-filter feeding fish rather than by size selective planktivores as a temperate lakes. Cladocerans in Florida lakes can increase in abundance significantly if freed from fish but fail to have an impact on algal biomass or composition. The greatest potential for using biomanipulation to manage phytoplankton-dominated lakes in the subtropics and tropics lies with phytophagous fish. Future research should concentrate on defining the role of individual fish taxa on phytoplankton composition and community structure, nutrient cycling, and planktonic productivity before embarking on whole lake manipulation projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. aquat. Sci. 40: 1813–1819.

    Article  Google Scholar 

  • Beadle, L. C., 1974. The Inland Waters of Tropical Africa. Longman, London, 365 pp.

    Google Scholar 

  • Beaver, L. C., T. L. Crisman & J. S. Bays, 1981. Thermal regimes of Florida lakes. Hydrobiologia 83: 267–273.

    Article  Google Scholar 

  • Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dunke, U. Hornig, R. Kruspe & S. Reichel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: Long-term effects in the hypertrophie Bautzen Reservoir. Limnologica 19: 97–110.

    CAS  Google Scholar 

  • Berry, F. H., 1955. Age, growth, and food of the gizzard shad, Dorosoma cepedianum in Lake Newman, Florida. Ph.D. Dissertation. University of Florida, Gainesville, 85 pp.

    Google Scholar 

  • Bowen, S. H., 1988. Detritivory and herbivory. pp. 243–247, In C. Leveque, M. N. Bruton & G. Ssentongo (eds.), Biology and Ecology of African Freshwater Fishes. ORSTOM, Paris, France, 508 pp.

    Google Scholar 

  • Brezonik, P. L., E. C. Blancher II, V. B. Myers, C. L. Hilty, M. K. Leslie, C. R. Kratzer, G. D. Marbury, B. R. Snyder, T. L. Crisman & J. J. Messer, 1979. Factors affecting primary production in Lake Okeechobee, Florida. Florida Sugar Cane League. Clewiston, Florida, 296 pp.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Crpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer & X. He, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Crisman, T. L., 1981. Algal control through trophic-level interactions: a subtropical perspective. In Proceedings of Workshop on Algal Management and Control. U.S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi, 131–145.

    Google Scholar 

  • Crisman, T. L., in press. Natural lakes of the southeastern United States: Origin, structure, and function. In W. H. Martin (ed.), Biotic Communities of the Southeastern United States. Wiley Press, New York.

    Google Scholar 

  • Crisman, T. L. & J. R. Beaver, 1988. Lake Apopka trophic structure manipulation. St. Johns River Water Management District, Palatka, Florida, 127 pp.

    Google Scholar 

  • Crisman, T. L. & H. M. Kennedy, 1982. The role of gizzard shad (Dorosoma cepedianum) in eutrophic Florida lakes. Publ. 64. Water Resources Research Center, University of Florida, Gainesville, 83 pp.

    Google Scholar 

  • Crisman, T. L., J. A. Foran, J. R. Beaver, A. E. Keller, P. D. Sacco, R. W. Bienert Jr., R. W. Ruble & J. S. Bays, 1986. Algal control through trophic-level interactions: investigations at Lakes Wauberg and Newnans, Florida. Florida Department of Natural Resources, 178 pp.

    Google Scholar 

  • Davidowitz, P., Z. M. Gliwicz & R. D. Gulati, 1988. Can Daphnia prevent a blue-green algal bloom in hypertrophie lakes? A laboratory test. Limnologica 19: 21–26.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McCracken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupleid on plankton community structure. Can. J. Fish. aquat. Sci. 43: 1935–1945.

    Article  Google Scholar 

  • Drenner, R. W., J. R. Mummert, F. deNoyelles Jr. & D. Kettle, 1984. Selective particle ingestion by a filter-feeding fish and its impact on phytoplankton community structure. Limnol. Oceanogr. 29: 941–948.

    Article  Google Scholar 

  • Gilbert, J. J., 1989. The effect of Daphnia interference on a natural rotifer and ciliate community: short-term bottle experiments. Limnol. Oceanogr. 34: 606–617.

    Article  Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Lynch, M., 1979. Predation, competition and zooplankton community structure: an experimental study. Limnol. Oceanogr. 24: 253–272.

    Article  Google Scholar 

  • Meijer, M. L., A. J. P. Raat & R. W. Doef, 1989. Restoration by biomanipulation of the Dutch shallow, eutrophic Lake Bleiswijkse Zoom: first results. Hydrobiol. Bull. 23: 49–58.

    Article  CAS  Google Scholar 

  • Mummert, J. R. & R. W. Drenner, 1986. Effects of fish size on the filtering ans selective particle ingestion of a filter-feeding clupeid. Trans. amer. Fish. Soc. 115: 522–528.

    Article  Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton and Phytoplankton in See Erken. Symb. Bot. Upsal. 17 (5) 163 pp.

    Google Scholar 

  • Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42: 291–302.

    Article  CAS  Google Scholar 

  • Shapiro, J., 1978. The need for more biology in lake restoration. In Lake Restoration. EPA–440/5–79–001, Washington, D.C.: 161 – 167.

    Google Scholar 

  • Shapiro, J., 1979. The importance of trophic level interactions to the abundance and species composition of algae in lakes. Dev. Hydrobiol. 2: 105–116.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: An ecosystem approach to lake restoration. pp. 85–86, In P. L. Brezonik & J. L. Fox (eds.), Water Quality Management Through Biological Controlo. Dept. Environ. Engineering Sciences, University of Florida, Gainesville, 164 pp.

    Google Scholar 

  • Threlkeld, S. T., 1987. Experimental evaluation of trophiccascade and nutrient-mediated effects of planktivorous fish on plankton community structure. In Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, NH.: 171–183.

    Google Scholar 

  • Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.

    Article  Google Scholar 

  • Vanni, M. J., 1986. Composition in zooplankton communities: supression of small species by Daphnia pulex. Limnol. Oceanogr. 31: 1039–1056.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Crisman, T.L., Beaver, J.R. (1990). Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. In: Gulati, R.D., Lammens, E.H.R.R., Meijer, ML., van Donk, E. (eds) Biomanipulation Tool for Water Management. Developments in Hydrobiology, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0924-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0924-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4074-9

  • Online ISBN: 978-94-017-0924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics