Skip to main content

Significance of cryptovivipary in Aegiceras corniculatum (L.) Blanco

  • Chapter
Biology and ecology of mangroves

Part of the book series: Tasks for vegetation science ((TAVS,volume 8))

Abstract

Cryptovivipary was studied in the mangrove Aegiceras corniculatum (L.) Blanco from western India. Na, K, Ca, Cl, Mg and P were measured in seedling parts at three developmental stages. Chloride ion uptake and distribution was followed by use of the radioisotope 36Cl, taken up through the plant stem. Photosynthate distribution was followed from leaves to fruits and seedling parts using the radioisotope 14C, applied to an adjacent leaf as a buffered bicarbonate solution.

It was found that the cryptoviviparous seedlings of A. corniculatum were nutritionally dependent on the parent and that this dependence was greatest during early seedling development. At all stages the translocated carbon was most concentrated in the embryo. Evidence from 36Cl experiments indicated that there are tissue barriers on the ion transport at two sites: between the stalk/calyx and the fruit, and between the seed coat and embryo. Chloride analyses of seedlings in nature supported the 36Cl uptake studies. Translocation of Cl to the seedlings was maximal toward maturity when they are developing salt tolerance against the time when they are shed and must grow on saline soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • Adriani, M.J. 1958. Halophyten. In: Encyclopaedia of Plant Physiology Vol. IV:709–736, Springer Verlag, Berlin.

    Google Scholar 

  • Bhosale, L.J. 1974. Physiology of salt tolerance of plants. Ph.D. Thesis, Shivaji University, Kolhapur, India, 293 pp.

    Google Scholar 

  • Brown, K.J. 1968. Translocation of carbohydrates in cotton: movement to the fruiting bodies. Ann. Bot. 32: 703–707.

    Google Scholar 

  • Chapman, V..1. 1976. Coastal vegetation. 2nd Ed., Pergamon Press. Oxford, N.Y., 292 pp.

    Google Scholar 

  • Crocker, W. and L.V. Barton. 1953. Physiology of seeds. Chronica Botanica, Waltham, Massachusetts.

    Google Scholar 

  • Epstein, E. 1965. Mineral metabolism. In: Plant Biochemistry, pp. 348–366. Academic Press, N.Y.

    Google Scholar 

  • Greenway, H. 1965. Plant response to saline substrates. VII. Growth and ion uptake through plant development in two varieties of Hordeum vulgare. Aust. Jour. Biol. Sci. 18: 763–779.

    Google Scholar 

  • Haberlandt, G. 1893. Ueber die Ernaehrung der Keimlinge und die Bedeutung des Endosperms bei viviparen Mangrovepflanzen. Ann. Jard. Bot. Buitenzorg 12: 91–116.

    Google Scholar 

  • Harris, F.S. and D.W. Pittman. 1918. Soil factors affecting the toxicity of alkali. Jour. Agr. Res. 15: 287–319.

    Google Scholar 

  • Harris, F.S. and D.W. Pittman. 1919. Relative resistance of various crops to alkali. U.S. Utah Agr. Exp. Sta. Bull. 168.

    Google Scholar 

  • Henckel, P.A. 1963. On the ecology of mangrove vegetation. Mitt. Flor. Soz. Arb. Gemeinsch. N.F. l0:Stolzenau/Weser: 201–205.

    Google Scholar 

  • Humphries, E.C. 1967. The dependence of photosynthesis on carbohydrate sink: current concepts. Proc. First Symp. Tropical Root Crops, Univ. West Indies, St. Augustine, Trinidad, 2: 34–45.

    Google Scholar 

  • Joshi, G.V., M. Pimplaskar and L.J. Bhosale. 1972. Physiological studies in germination of mangroves. Bot. Mar. 15: 91–95.

    Google Scholar 

  • Koller, D. 1955. Regulation of germination in seeds. Bull. Res. Counc., Israel 5D: 85–105.

    Google Scholar 

  • Lotschert, W. and F. Liemann. 1967. Accumulation of salt in the embryo of Rhizophora mangle L. developing on the mother plant. Planta. 77: 142–156.

    Google Scholar 

  • Mothes, K. 1961. Aktiver Transport als regulatives Prinzip fur gerichete Stoffverteilung in hoheren Pflanzen. 12 Koll Ges: fur Physiol Chemie 5: 189–207.

    Google Scholar 

  • Onal, M. 1962. Zusammensetzung des Zellsaftes einiger Salzmarshen und Dunenpflanzen in der Umgebung von Neapel. Beit Phytol. ( Walter-festschrift ). 30: 89–100.

    Google Scholar 

  • Pannier, F.P. 1962. Estudio fisiologico sobre la viviparia de Rhizophora mangle L. Acta Cient Venez. 13: 184–197.

    Google Scholar 

  • Pannier, R.F. and F. Pannier. 1973. Determination de substancias de tipo gibberellina en tejidas de Rhizophora mangle L. en diferentes etapas de desarrollo. Acta Cient. Venez. 24 (Suppl. I): 33–34.

    Google Scholar 

  • Pannier, F. and R.F. Pannier. 1975. Physiology of vivipary in Rhizophora mangle L. Proc. Int. Sym. Biol. Mgt. Mangroves. Vol. IL: 632–639.

    Google Scholar 

  • Pannier, F. and M.P. Rodriguez. 1967. The /3-complex inhibitor and its relation to vivipary in Rhizophora mangle. L. Int. Res. Ges. Hydrobiol. 52: 783–792.

    Google Scholar 

  • Rains, D.W. and E. Epstein. 1967. Preferential absorption of potassium by leaf tissue of the mangrove Avicennia marina. An aspect of halophytic competence in coping with salt. Aust. Jour. Biol. Sci. 20: 847–857.

    Google Scholar 

  • Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. USDA Book No. 60 (56): 130–131.

    Google Scholar 

  • Sekine, T. 1965. Photoelectric colorimetry in biochemistry, Part II. Nanko-d-Publishing Co. Tokyo, 242 pp.

    Google Scholar 

  • Stewart, J. 1898. Effect of alkali on seed germination. 9th Ann. Rept. Utah. Agr. Exp. Sta.: 26–35.

    Google Scholar 

  • Sutcliffe, J.F. 1962. Mineral salts absorption in plants. Pergamon Press. Oxford, London, 194 pp.

    Google Scholar 

  • Toole, E.H., S.B. Borthwick and V.K. Toole. 1956. Physiology of seed germination. Ann. Rev. Pl. Physiol. 7: 299–324.

    Google Scholar 

  • Volhard, A. 1956. Chlorides. Methods of plant analysis. Springer-Verlag, Berlin, Vol. I, 487 pp.

    Google Scholar 

  • Waisel, Y. 1958. Germination behaviour of some halophytes. Bull. Res. Counc. Israel, 6D: 187–189.

    Google Scholar 

  • Walter, H. 1961. The adaptation of plants to saline soils. Arid Zone Research, Vol. XIV, Salinity problem in the arid zone, Published by UNESCO.

    Google Scholar 

  • Wareing, P.F. and J. Patrick. 1975. Source-sink relation and the partition of assimilates in the plants. In: Photosynthesis and Productivity in Different Environments, pp. 481–499, Cambridge Univ. Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Howard J. Teas

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bhosale, L.J., Shinde, L.S. (1983). Significance of cryptovivipary in Aegiceras corniculatum (L.) Blanco. In: Teas, H.J. (eds) Biology and ecology of mangroves. Tasks for vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0914-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0914-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8526-9

  • Online ISBN: 978-94-017-0914-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics