Skip to main content

Heterotrophic nanoflagellates and bacteria in sediment of a brackish water sill basin in the Baltic Sea

  • Conference paper
Biological, Physical and Geochemical Features of Enclosed and Semi-enclosed Marine Systems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 135))

  • 148 Accesses

Abstract

This study was performed in 1992–1993 in Pojo Bay, a 30–35 m deep brackish water sill basin situated on the SW coast of Finland. Bacterial productivity as well as abundance of bacteria and heterotrophic nanoflagellates (HNF) in the sediment were studied in the top 10 mm of the sediment at three stations. Bacterial productivity was measured by incorporation of 3H-thymidine Bacteria and heterotrophic nanoflagellates were counted with epifluorescence microscopy. Bacterial abundance in Pojo Bay was higher (up to 1.63×109 cells ml−1) than estimates from more exposed marine intertidal or sandy sediments and seasonal differences were small. Although the bacterial productivity values were low in the cold sediment (range 3×103 to 2×107 cells day−1), they were, nevertheless, within the range measured in muddy or sandy sediments. HNF abundances were highest in spring/summer (5.1×105 cells m1−1) and lowest in autumn/winter summer (1.1×105 cells m1−1), being on the whole among the highest reported from marine sediments. The HNF abundances were significantly different between seasons, whereas spatial differences between stations were not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alongi, D. M., 1986. Quantitative estimates of benthic protozoa in tropical marine systems using silica gel: A comparison of methods. Estuar. Coast. Shelf. Sci. 23: 443–450.

    Article  Google Scholar 

  • Alongi, D. M., 1988. Microbial-meiofaunal interrelationships in some tropical intertidal sediments. J. Mar. Res. 46: 349–365.

    Article  CAS  Google Scholar 

  • Alongi, D. M., 1990. Abundances of benthic microfauna in relation to outwelling of mangrove detritus in a tropical coastal region. Mar. Ecol. Prog. Ser. 63: 53–63.

    Article  Google Scholar 

  • Alongi, D. M., 1991. Flagellates of benthic communities: characteristics and methods of study. In: D. J. Patterson & J. Larsen, (eds), The Biology of Free-living Heterotrophic Flagellates, Syst. Ass. spec. vol. No. 45. Clarendon Press, Oxford: 57–75.

    Google Scholar 

  • Autio, R. M., 1992. Temperature regulation of brakish water bacterioplankton. Arch. Hydrobiol. Beih. 37: 253–263.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Bak R. P. M. & G. Nieuwland, 1989. Seasonal fluctuations in benthic protozoan populations at different depths in marine sediments. Neth. J. Sea Res. 24: 37–44.

    Article  Google Scholar 

  • Bak R. P. M., F. C. van Duyl, G. Nieuwland & A. J. Kop, 1991. Benthic heterotrophic nanoflagellates in North Sea field/mesocosm bottoms and their response to algal sedimentation. Ophelia 33: 187–196.

    Article  Google Scholar 

  • Benner, R., J. Lay, E. K’nees, E. & R. E. Hodson, 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: Implication for detritus-based food webs. Limnol. Oceanogr. 33: 1514–1526.

    Article  CAS  Google Scholar 

  • Berninger, U.-G., D. A. Caron, R. W. Sanders & B. J. Finlay, 1991. Heterotrophic flagellates of planktonic communities, their characteristics and methods of study. In: D. J. Patterson & J. Larsen (eds), The Biology of Free-living Heterotrophic Flagellates, Syst. Ass. spec. vol. No. 45, Clarendon Press, Oxford. 39–56.

    Google Scholar 

  • Blackburn, T. H., 1988. Benthic mineralization and bacterial production. In: T. H. Blackburn & J. Sorensen (eds), Benthic Mineralization and Bacterial Production. Nitrogen Cycling in Coastal Marine Environments. SCOPE. Wiley and Sons Ltd., Chichester, 451 pp.

    Google Scholar 

  • Booth, B. C., 1993. Estimating cell concentration and biomass of autotrophic plankton using microscopy. In: P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, USA, 777 pp.

    Google Scholar 

  • Bratbak, G. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Appl. envir. Microbiol. 755–757.

    Google Scholar 

  • B¢rsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171–175.

    Article  Google Scholar 

  • Cammen, L. M., 1991. Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandfiat and an intertidal mudflat. Mar. Ecol. Prog. Ser. 71: 13–25.

    Article  Google Scholar 

  • Dye, A. H., 1993. A method for the quantitative estimation of bacteria from mangrove sediments. Estuar. coast. shelf Sci. 17: 207–212.

    Article  Google Scholar 

  • Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. (Working group 9). The Baltic Marine Biologists 5: 1–38.

    Google Scholar 

  • Ekebom, J. D. J. Patterson & N. Vors, 1996. Heterotrophic flagellates from coral reef sediments (Great Barrier Reef, Australia). Arch. Protistenkd. 146: 251: 272.

    Google Scholar 

  • Ellery, W. N. & M. H. Schleyer, 1984. Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria. Mar. Ecol. Prog. Ser. 15: 247–250.

    Article  Google Scholar 

  • Fenchel, T. 1975. The quantitative importance of the benthic micro- fauna of an Arctic tundra pond. Hydrobiologia 46: 445–464.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Article  Google Scholar 

  • Fenchel, T., 1987. Ecology of Protozoa. Madison/Springer Verlag, Berlin, 197 pp.

    Book  Google Scholar 

  • Fenchel, T., 1991. Flagellate design and function. In: D. J. Patterson & J. Larsen (eds), The Biology of Free-living Heterotrophic Flagellates. Syst. Ass. spec. vol. No. 45. Clarendon Press, Oxford: 7–19.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and Mineral Cycling. Academic Press, London, 225 pp.

    Google Scholar 

  • Gasol, J. M. & D. Vaque, 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? Limnol. Oceanogr. 38: 657–665.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Hondeveld, B. J. M., R. P. N. Bak & F. C. Van Duyl, 1992. Bacterivory by heterotrophic nanoflagellates in marine sediments measured by uptake of fluorescently labelled bacteria. Mar. Ecol. Prog. Ser. 89: 63–71.

    Article  Google Scholar 

  • Hondeveld, B. J. M., G. Nieuwland, F. C. Van Duyl & R. P. M. Bak, 1994. Temporal and spatial variations in heterotrophic nanoflagellate abundance in North Sea sediments. Mar. Ecol. Prog. Ser. 109: 235–243.

    Article  Google Scholar 

  • Jönsson, B., K. Sundbäck, P. Nilsson, C. Nilsson, I. LindströmSwanberg & J. Ekebom, 1993. Does the influence of the epibenthic predator Crangon crangon L. (Brown shrimp) extend to sediment microalgae and bacteria? Neth. J. Sea. Res. 31: 83–94.

    Google Scholar 

  • Kansanen, P. H., T. Jaakkola, S. Kulmala & R. Suutarinen, 1991. Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia 222: 121–140.

    Article  CAS  Google Scholar 

  • Kemp, P. F., 1988. Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria. Mar. Ecol. Prog. Ser. 49: 163–169.

    Article  Google Scholar 

  • Kemp, P. F., 1990. The fate of benthic bacterial production. Aquat. Sci. 2: 109–124.

    Google Scholar 

  • Kjelleberg, S. & M. Hermansson, 1987. Short term responses to energy fluctuation by marine heterotrophic bacteria. In: M. A. Sleigh (ed.), Microbes in the Sea. Halsted Press, Chichester, U.K., 241 pp.

    Google Scholar 

  • Kuuppo, P., 1994. Annual variation in the abundance and size of heterotrophic nanoflagellates on the SW coast of Finland, the Baltic Sea. J. Plankton Res. 16: 1525–1542.

    Article  Google Scholar 

  • Larsen, J. & D. J. Patterson, 1990. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist., 24: 801–937.

    Article  Google Scholar 

  • Lighthart, B., 1969. Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and Adjacent Pacific ocean. J. Fish. Res. Can. 26: 299–304.

    Article  Google Scholar 

  • Lignell, R., A.-S. Heiskanen, H. Kuosa, K. Gundersen, P. KuuppoLeinikki, R. Pajuniemi & A. Uitto, 1993. Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the plantonic food web in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 94: 239–252.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Article  CAS  Google Scholar 

  • Macisaac, E. A. & J. G. Stockner, 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: P. F. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole, (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, USA, 777 pp.

    Google Scholar 

  • Mare, M., 1944 A study of a marine benthic community with special reference to the micro-organisms. J. Mar. Biol. Ass. U.K. 25: 517–554.

    Article  Google Scholar 

  • Miller, D. C., 1989. Abrasion effects on microbes in sandy sediments. Mar. Ecol. Prog. Ser. 55: 73–82.

    Article  Google Scholar 

  • Moriarty, D. J. W. 1986. Measurements of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv. Microb. Ecol. 9: 245–292.

    CAS  Google Scholar 

  • Moriarty, D. J. W., 1988. Accurate conversion factors for calculating bacterial growth rates from thymidine incorporation into DNA: Elusive of illusive ? Arch. Hydrobiol. Beih. Ergebn. Limnol. 31: 211–217.

    Google Scholar 

  • Moriarty, D. J. W., 1990a. Bacterial productivity in sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34: 183–189.

    Google Scholar 

  • Moriarty, D., 1990b. Methods for estimating bacterial growth rates and production of biomass in aquatic environments. Methods Microbiol. 22: 211–234.

    Article  Google Scholar 

  • Moriarty, D. J. W. & A. C. Hayward, 1982. Ultrastructure of bacteria and the proportion of gram-negative bacteria in marine sediments. Microb. Ecol. 8: 1–14.

    Article  Google Scholar 

  • Moriarty, D. J. W., P. C. Pollard & W. G. Hunt, 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85: 285–292.

    Article  Google Scholar 

  • Moriarty, D. J. W., D. G. Roberts & P. G. Pollard, 1990. Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 61: 145157.

    Google Scholar 

  • Niemi, A., 1978. Ecology of phytoplankton in the Tvärminne area. SW coast of Finland. Acta. Bot. Fennici. 106: 1–28.

    CAS  Google Scholar 

  • Niemi, A. & A.-M. Aström, 1987. Ecology of phytoplankton in the Tvärminne area, SW coast of Finland. IV. Environmental condition, chlorophyll a and phytoplankton in winter and spring 1984 at Tvärminne Storfjärd. Ann. Bot. Fennici 24: 333–352.

    Google Scholar 

  • Nilsson, P., B. Jönsson, I. Lindström-Swanberg & K. Sundbäck, 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients. Mar. Ecol. Prog. Ser. 71: 275–290.

    Article  Google Scholar 

  • Novitsky, J. A., 1983. Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax harbor, Canada. Appl. envir. Microbiol. 15: 1753–1760.

    Google Scholar 

  • Patterson, D. J., J. Larsen & J. O. Corliss, 1989. The ecology of heterotrophic flagellates and ciliates living in marine sediments. Prog. Protistol 3: 185–277.

    Google Scholar 

  • Schallenberg, M., J. Kalff & J. B. Rasmussen, 1989. Solutions to problems in enumerating sediment bacteria by direct counts. Appl. Env. Microbiol. 55: 1214–1219.

    CAS  Google Scholar 

  • Sherr, E. B. & B. F. Sher, 1994. Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs. Microb.Ecol. 28: 223–235.

    Article  Google Scholar 

  • Thomsen, H. A., 1992. Heterotrophic protists (excl. dinoflagellates, loricate choanoflagellates, and ciliates). In: H. A. Thomsen (ed.), Plankton from Inner Danish Waters. An Analysis of the Autotrophic and Heterotrophic Plankton in Kattegat. HAV 90 Rapport. Danish National Agency for Environmental Protection (in Danish, with species lists and illustrations). Haysforskning fra Miljpstyrelsen, 11: 195–246.

    Google Scholar 

  • Tuominen, L., 1995. Comparison of leucine uptake methods and a thymidine incorporation method for measuring bacterial activity in sediment. J. Microb. Methods 24: 125–134.

    Article  CAS  Google Scholar 

  • Van Duyl, F. C., & A. J. Kop, 1990. Seasonal patterns of bacterial production and biomass in intertidal sediments of the western Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 59: 249–261.

    Article  Google Scholar 

  • Velji, M. I. & L. J. Albright, 1986. Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments. Can. J. Microbiol. 32: 121–126.

    Article  Google Scholar 

  • Viitasalo, M. & T. Katajisto, 1994. Mesozooplankton resting eggs in the Baltic Sea: identification and vertical distribution in laminated and mixed sediments. Mar. Biol. 120: 455–465.

    Article  Google Scholar 

  • Vörs, N., 1992. Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36: 1–109.

    Article  Google Scholar 

  • Wainright, S., 1990. Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar. Ecol. Prog. Ser. 62: 271–281.

    Article  Google Scholar 

  • Wicks, R. J. & R. D. Robarts, 1987. The extraction and purification of DNA labelled with [methyl-3H]thymidine in aquatic bacterial production studies. J. Plankton Res. 9: 1159–1166.

    Article  CAS  Google Scholar 

  • Wintermanns, J. F. G. M. & A. De Mots, 1965. Spectrophotometric characteristics of chlorophylls a and b and their phaeophytins. Biochim. Biophys. Acta. 109: 448–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ea Maria Blomqvist Erik Bonsdorff Karel Essink

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ekebom, J. (1999). Heterotrophic nanoflagellates and bacteria in sediment of a brackish water sill basin in the Baltic Sea. In: Blomqvist, E.M., Bonsdorff, E., Essink, K. (eds) Biological, Physical and Geochemical Features of Enclosed and Semi-enclosed Marine Systems. Developments in Hydrobiology, vol 135. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0912-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0912-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5250-6

  • Online ISBN: 978-94-017-0912-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics