Skip to main content

Observable Effects of the Uncertainty Relations in the Covariant Phase Space Representation of Quantum Mechanics

  • Chapter
Bell’s Theorem, Quantum Theory and Conceptions of the Universe

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 37))

  • 943 Accesses

Abstract

The uncertainty relation can be stated in terms of an area in phase space in the Wigner phase space representation of quantum mechanics. Since Lorentz boosts are area-preserving canonical transformations in the phase space of the light-cone variables, it is possible to state the uncertainty relation in a Lorentz-invariant manner. It is shown that Feynman’s parton picture is one of the observable effects of this Lorentz-invariant uncertainty relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wigner, E. (1932) “On the quantum correction for thermodynamic equilibrium”, Phys. Rev. 40, 749–759;

    Google Scholar 

  2. Hillery, M., O’Connell, R. F., Scully, M. O., and Wigner, E. P. (1984) “Distribution functions in physics: Fundamentals”, Phys. Rep. 106, 121–167.

    Google Scholar 

  3. Kim, Y. S. and Wigner, E. P. (1988) “Covariant phase space representation for harmonic oscillators”, Phys. Rev. A 36, 1159–1167.

    Article  MathSciNet  ADS  Google Scholar 

  4. Lee, H. W. (1982) “Spreading of a free wave packet”, Am. J. Phys. 50, 438–440;

    Google Scholar 

  5. Littlejohn, R. G. (1986) “The semiclassical evolution of wave packets”, Phys. Rep. 138, 193–291;

    Google Scholar 

  6. Royer, A. (1987) “Squeezed states and their Wigner functions” in Y. S. Kim and W. W. Zachary (eds.), The Physics of Phase Space, Springer-Verlag, Heidelberg, 1987, pp. 235–237.

    Google Scholar 

  7. Fujimura, K., Kobayashi, T., and Namiki, M. (1970) “Nucleon electromagnetic form factors at high momentum transfers in an extended particle model based on the quark model”, Prog. Theor. Phys. 43, 73–79.

    Article  ADS  Google Scholar 

  8. Feynman, R. P., Kislinger, M, and Ravndal, F. (1971) “Current matrix element from a relativistic quark model”, Phys. Rev. D 3, 2706–2732.

    Google Scholar 

  9. Feynman, R. P. (1969) “The behavior of hadron collisions at extreme energies”, in C. N. Yang et al. (eds.), High Energy Collisions, Gordon and Breach, New York, pp. 237–258.

    Google Scholar 

  10. Kim, Y. S. and Noz, M. E. (1986) Theory and Applications of the Poincaré Group, Reidel Publishing Co., Dordrecht.

    Book  Google Scholar 

  11. Hussar, P. E. (1981) “Valons and harmonic oscillators”, Phys. Rev. D 23, 2781–1983;

    Google Scholar 

  12. Haberman, M. L. and Hussar, P. E. (1988) “Reexamination of SU(6) symmetry breaking in high-energy phenomenology”, Z. Phys. C 40, 152–162.

    Google Scholar 

  13. Han, D, Kim, Y. S., and Noz, M. E. (1987) “Linear canonical transformations of coherent and squeezed states in the Wigner Phase Space”, Phys. Rev. A 37, 807–814.

    Google Scholar 

  14. Noz, M. E. and Kim, Y. S. (1988) Special Relativity and Quantum Theory, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  15. Dirac, P. A. M. (1945) “Unitary representations of the Lorentz group”, Proc. Roy. Soc. (London) A183, 284–295.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Yukawa, H. (1953) “Structure and mass spectrum of elementary particles II. Oscillator model”, Phys. Rev. 91, 415–1945.

    Google Scholar 

  17. Dirac, P. A. M. (1927) “The quantum theory of the emission and absorption of radiation”, Proc. Roy. Soc. (London) A114, 243–265.

    Article  ADS  MATH  Google Scholar 

  18. Dirac, P. A. M. (1949) “Forms of relativistic dynamics”, Rev. Mod. Phys. 21, 392–399.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Wigner, E. (1939) “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math. 40, 149–204.

    Article  MathSciNet  Google Scholar 

  20. Han, D., Kim, Y. S., and Son, D. (1986) “Eulerian parametrization of Wigner’s little groups and gauge transformations in terms of rotations in two-component spinors”, J. Math. Phys. 27, 2228–2235;

    Google Scholar 

  21. Kim, Y. S. and Wigner, E. P. (1987) “Cylindrical group and massless particles” J. Math. Phys. 28, 1175–1179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, Y.S. (1989). Observable Effects of the Uncertainty Relations in the Covariant Phase Space Representation of Quantum Mechanics. In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0849-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0849-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4058-9

  • Online ISBN: 978-94-017-0849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics