Skip to main content

Hormonal Balance in Plants During Colonization by Mycorrhizal Fungi

  • Chapter
Arbuscular Mycorrhizas: Physiology and Function

Abstract

The complex inter- and extracellular relationship between host roots and arbuscular mycorrhizal (AM) fungi requires a continuous exchange of signals to ensure the proper development of mycorrhizas. Plant hormones are known to play roles in different developmental processes and may therefore also be involved in the regulation of this symbiosis. Little is known about the function of plant hormones during the colonization process, although there is evidence that they are involved in signalling events between AM fungi and host plants. The current knowledge on the involvement of plant hormones in the establishment and development of mycorrhizas is presented and summarized in a model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, J., Ishii, T., Ogata, K., Wamocho, L.S., Matsumoto, I. and Kadoya, K. 1998. Effects of putrescine and alginate oligosaccharide applied to the soil on vesicular-arbuscular mycorrhizal formation in the roots of passionfruit and avocado. In: Second International Conference on Mycorhhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Danell, P. Fransson, O. Kârén, B. Lindahl, I Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 16.

    Google Scholar 

  2. Allen, M.F., Moore Jr., T.S. and Christensen, M. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J. Bot. 58: 371–374.

    Article  CAS  Google Scholar 

  3. Allen, M.F., Moore Jr., T.S. and Christensen, M. 1982. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J. Bot. 60: 468–471.

    CAS  Google Scholar 

  4. Arteca, R.N. 1995. Brassinosteroids. In: Plant Hormones. Physiology, biochemistry and molecular biology. P.J. Davis, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 158–178.

    Google Scholar 

  5. Augé, R.M., Stodola, A.J.W., Ebel, R.C. and Duan, X. 1994. Non-hydraulic signalling of soil drying in mycorrhizal maize Planta. 193: 74–82.

    Google Scholar 

  6. Azcon, R., Azcon-G. De Aguilar, C. and Barea, J.M. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol. 80: 359–364.

    CAS  Google Scholar 

  7. Baas, R. and Kuiper, D. 1989. Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to internal cytokinin concentrations. Physiol. Plant. 76: 211–215.

    Article  CAS  Google Scholar 

  8. Barea, J.M. 1986. Importance of hormones and root exudates in mycorrhizal phenomena. In: Physiological and genetical aspects of mycorrhizae. V. Gianinazzi-Pearson and S. Gianinazzi, Eds., INRA, Paris, pp. 177–187.

    Google Scholar 

  9. Barea, J.M. and Azcon-Aguilar, C. 1982. Production of plant growth regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 43: 810–813.

    PubMed  CAS  Google Scholar 

  10. Bareen, F., Iqbal, S.H. and Abdin, Z. 1988. Effects of IAA treatment of roots on vesicular-arbuscular mycorrhizal infections at various developmental stages of Allium sativum L. Biologia. 43: 193–197.

    Google Scholar 

  11. Baser, C.M., Garrett, H.E., Mitchell, R.J., Cox, G.S. and Starbuck, C.J. 1987. Indolebutyric acid and ectomycorrhizal inoculation increase lateral root initiation and development of container-grown black oak seedlings. Can J. For. Res. 17: 36–39.

    Article  CAS  Google Scholar 

  12. Bécard, G., Taylor, L.P., Douds, Jr., D.D., Pfeffer, P.E. and Doner, L.W. 1995. Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol. Plant Microbe Interact. 8: 252–258.

    Article  Google Scholar 

  13. Beilby, J.P. 1980. Fatty acid and sterol composition of germinated spores of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis. Lipids 15: 949–952.

    Article  CAS  Google Scholar 

  14. Bennett, R. and Wallsgrove, R. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617–633.

    Article  CAS  Google Scholar 

  15. Bennett, R., Ludwig-Müller, J., Kiddie, G., Hilgenberg, W. and Wallsgrove, R. 1995. Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): Glucosinolate and IAA biosynthetic enzymes. Planta. 196: 239–244.

    CAS  Google Scholar 

  16. Bennett, R., Kiddle, G., Hick, A., Dawson, G. and Wallsgrove, R. 1996. Distribution and activity of microsomal NADPH-dependent monooxygenases and amino acid decarboxylases in cruciferous and non-cruciferous plants and their relationship to foliar glucosinolate content. Plant Cell Environ. 19: 801–812.

    Article  CAS  Google Scholar 

  17. Boller, T. 1991. Ethylene in pathogenesis and disease resistance. In: The plant hormone ethylene. A.K. Mattoo, J.C. Suttle, Eds.,, CRC Press, Boca Raton, pp. 293–314.

    Google Scholar 

  18. Bothe, H., Klingner, A., Kaldorf, M., Schmitz, O., Esch, H., Hundeshagen, B. and Kernebeck, H. 1994. Biochemical approaches to the study of plant-fungal interactions in arbuscular mycorrhiza. Experientia. 50: 919–925.

    Article  CAS  Google Scholar 

  19. Brann, D.W., Hendry, L.B. and Mahesh, V.B. 1995. Emerging diversities in the mechanism of action of steroid hormones. J. Steroid Biochem. Mol. Biol. 52: 113–133.

    Article  PubMed  CAS  Google Scholar 

  20. Clapperton, M.J., Koshioka, M. and Pharis, R.P. 1985. The effect of infection by a vesicular-arbuscular mycorrhizal fungus on the gibberellin content of slender wheat grass. Plant Physiol. 77: 79.

    Article  Google Scholar 

  21. Clouse, S.D. 1996. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 10: 1–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen, J.D., Baldi, B.G. and Slovin, J.P. 1986. 13C6-(benzene ring)-indole-3-acetic acid. A new internal standard for quantitative mass spectral analysis of indole-3-acetic acids in plants. Plant Physiol. 75: 257–260.

    Google Scholar 

  23. Crafts, C.B. and Miller, C.O. 1974. Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol. 54: 586–588.

    Article  PubMed  CAS  Google Scholar 

  24. Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, Hj. and Bothe, H. 1992. Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol. 141: 33–39.

    Article  Google Scholar 

  25. David, R., Itzhaki, H, Ginzberg, I., Gafni, Y. and Kapulnik, Y. 1998. Suppression of tobacco basic chitinase gene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. Mol. Plant Microbe Interact. 11: 489–497.

    Article  PubMed  CAS  Google Scholar 

  26. Davies, P.J. (ed.) 1995. Plant Hormones. Physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  27. Daxenbichler, M.E., Spencer, G.F., Carlson, D.G., Rose, G.B., Brinker, A.M. and Powell, R.G. 1991. Glucosinolate composition of seeds from 297 species of wild plants. Phytochem. 30: 2623–2638.

    Article  CAS  Google Scholar 

  28. Dixon, R.K. 1989. Cytokinin activity in Citrus jambhiri seedlings colonized by mycorrhizal fungi. Agric. Ecosyst. Environ. 29: 103–106.

    Article  Google Scholar 

  29. Dixon, R.K., Garrett, H.E. and Cox, G.S. 1988. Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular-arbuscular mycorrhizae. Tree Physiol. 4: 9–18.

    Article  PubMed  CAS  Google Scholar 

  30. Driige, U. and Schönbeck, F. 1992. Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant Physiol. 141: 40–48.

    Article  Google Scholar 

  31. Duan, X., Neuman, D.S., Reiber, J.M., Green, C.D., Saxton, A.M. and Augé, R.M. 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot. 47: 1541–1550.

    Article  CAS  Google Scholar 

  32. Dutra, P.V., Abad, M., Almela, V. and Agusti, M. 1996. Auxin interaction with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck * Smith improves vegetative growth of two citrus rootstocks. Sci. Hort. 66: 77–83.

    Article  CAS  Google Scholar 

  33. Edriss, M.H., Davis, R.M. and Burger, D.W. 1984. Influence of mycorrhizal fungi on cytokinin production in sour orange. J. Am. Soc. Hort. Sci. 109: 587–590.

    CAS  Google Scholar 

  34. El Ghachtouli, N., Martin-Tanguy, J., Paynot, M. and Gianinazzi, S. 1996. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett. 385: 189–192.

    Article  PubMed  Google Scholar 

  35. Epstein, E. and Ludwig-Müller, J. 1993. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant. 88: 382–389.

    Article  CAS  Google Scholar 

  36. Esch, H., Hundeshagen, B., Schneider-Poetsch, Hj. and Bothe, H. 1994. Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci. 99: 9–16.

    Article  CAS  Google Scholar 

  37. Farmer, E.E. and Ryan, C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716.

    Article  PubMed  CAS  Google Scholar 

  38. Frankenberger Jr., W.T. and Arshad, M. 1995. Microbial biosynthesis of auxins. In: Phytohormones in Soil. W.T. Frankenberger Jr., M. Arshad, eds. pp 35–71, Marcel Dekker Inc., New York.

    Google Scholar 

  39. Frey, B., Buser, H.-R. and Schüepp, H. 1992 Identification of ergosterol in vesicular-arbuscular mycorrhizae. Biol. Fert. Soils. 13: 229–234.

    Article  CAS  Google Scholar 

  40. Galston, A.W. and Kaur-Sawhney, R. 1995. Polyamines as endogenous growth regulators. In: Plant Hormones. Physiology, biochemistry and molecular biology P.J. Davis, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 158–178.

    Google Scholar 

  41. Garcia-Garrido, J.M., Blilou, I. and Ocampo, J.A. 1998. Induction of salicylic acid in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae.. In: Second International Conference on Mycorrhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Danell, P. Fransson, O. Kârén, B. Lindahl, I Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 68.

    Google Scholar 

  42. Gay, G. and Debaud, J.C. 1986. Preliminary study of IAA synthesis by ericoid endomycorrhizal fungi. In: Physiological and genetical aspects of mycorrhizae. V. Gianinazzi-Pearson, S. Gianinazzi, Eds., INRA, Paris, pp. 677–682.

    Google Scholar 

  43. Gay, G. and Debaud, J.C. 1987. Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: Inter-and intraspecific variability in homo-and dikaryotic mycelia. Appl. Microbiol. Biotechnol. 26: 141–146.

    Article  CAS  Google Scholar 

  44. Gianinazzi-Pearson, V. 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell. 8: 1871–1883.

    PubMed  Google Scholar 

  45. Ginzberg, I., David, R., Shaul, O., Elad, Y., Wininger, S., Ben-Dor, B., Badani, H., Fang, Y., van Rhijn, P., Li, Y., Hirsch, A.M. and Kapulnik, Y. 1998. Glomus intraradices colonization regulates gene expression in tobacco roots. Symbiosis. 25: 145–157.

    Google Scholar 

  46. Glenn, M.G., Chew, F.S. and Williams, P.H. 1985. Hyphal penetration of Brassica ( Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol. 99: 463–472.

    Article  Google Scholar 

  47. Goicoechea, N., Antolin, M.C., Strnad, M. and Sanchez-Diaz, M. 1995. Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J. Exp. Bot. 46: 1543–1549.

    Article  CAS  Google Scholar 

  48. Goicoechea, N., Antolin, M.C., Strnad, M. and Sanchez-Diaz, M. 1996. Root cytokinins, acid phosphatase and nodule activity in drought-stresses mycorrhizal or nitrogen fixing alfalfa plants. J. Exp. Bot. 47: 683–686.

    Article  CAS  Google Scholar 

  49. Goicoechea, N., Antolin, M.C. and Sanchez-Diaz, M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol. Plant. 100: 989–997.

    Article  CAS  Google Scholar 

  50. Gundlach, H., Müller, M.J., Kutchan, T.M. and Zenk, M.H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA. 89: 2389–2393.

    Article  CAS  Google Scholar 

  51. Gunze, C.M.B. and Hennessy, C.M.R. 1980. Effect of host-applied auxin on development of endomycorrhiza in cowpeas. Trans. Br. Mycol. Soc. 74: 247–251.

    Article  CAS  Google Scholar 

  52. Harbome, J.B. 1980. Plant phenolics. In: Secondary Plant Products. E.A. Bell, B.V. Charlwood, eds., Springer Verlag, Berlin. pp 329–402.

    Google Scholar 

  53. Hartmann, H.T., Kester, D.E. and Davies, F.T. (eds.). 1990. Plant propagation: Principles and practices. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  54. Hirsch, A.M., Fang, Y., Asad, S. and Kapulnik, Y. 1997. The role of phytohormones in plant-microbe symbiosis. Plant Soil. 194: 171–184.

    Article  CAS  Google Scholar 

  55. Ho, I. 1987. Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity and phytohormone production. Can. J. For. Res. 17: 31–35.

    Article  CAS  Google Scholar 

  56. Ishii, T., Shrestha, Y.H., Matsumoto, I. and Kadoya, K. 1996. Effect of ethylene on the growth of vesicular-arbuscular mycorrhizal fungi and on the mycorrhizal formation of trifoliate orange roots. J. Japan. Soc. Hort. Sci. 65: 525–529.

    Article  CAS  Google Scholar 

  57. Kapulnik, Y., David, R., Shaul, O., Sinvany, G., Ganon, D., Ginzberg, I., Galili, S., Badani, H., Wininger, S. and Ben Dor, B. 1998. Induction and suppression of gene expression in alfalfa-and tobacco-endomycorrhizal fungal communication.. In: Second International Conference on Mycorrhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Danell, P. Fransson, O. Krén, B. Lindahl, I. Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 95.

    Google Scholar 

  58. Katayama, M. and Gautam, R.K. 1996. Synthesis and biological activities of substituted 4,4,4-trifluoro-3-(indole-3-)butyric acids, novel fluorinated plant growth regulators. Biosci. Biotech. Biochem. 60: 755–759.

    Google Scholar 

  59. Katayama, M., Kato, K., Kimoto, H. and Fujii, S. 1995. (S)-(+)-4,4,4-trifluoro-3-(indole-3-) butyric acid, a novel fluorinated plant growth regulator. Experientia. 51: 721–724.

    Google Scholar 

  60. Koide, R.T. and Schreiner, R.P. 1992. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 557–581.

    Article  CAS  Google Scholar 

  61. Lambais, M.R. and Mehdy, M.C. 1993. Suppression of endochitinase, ß-1,3-glucanase, and chalcone isomerase in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol. Plant Microbe Interact. 6: 75–83.

    Google Scholar 

  62. Leuba, V. and LeTourneau, D. 1990. Auxin activity of phenylacetic acid in tissue culture. J. Plant Growth Regul. 9: 71–76.

    Article  CAS  Google Scholar 

  63. Li, X.-L., George, E. and Marschner, H. 1991. Phosphorous depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119: 397–404.

    Article  CAS  Google Scholar 

  64. Ludwig-Müller, J. and Hilgenberg, W. 1988. A plasma membrane-bound enzyme oxidizes L-tryptophan to indole-3-acetaldoxime. Physiol. Plant. 74: 240–250.

    Article  Google Scholar 

  65. Ludwig-Müller, J. and Hilgenberg, W. 1995. Characterization and partial purification of indole-3-butyric acid synthetase from maize (Zea mays). Physiol. Plant. 94: 651–660.

    Article  Google Scholar 

  66. Ludwig-Müller, J., Hilgenberg, W. and Epstein, E. 1995. The in vitro biosynthesis of indole-3-butyric acid in maize. Phytochem. 40: 61–68.

    Article  Google Scholar 

  67. Ludwig-Müller, J., Schubert, B. and Pieper, K. 1995. Regulation of IBA synthetase by drought stress and abscisic acid. J. Exp. Bot. 46: 423–432.

    Article  Google Scholar 

  68. Ludwig-Müller, J., Kaldorf, M., Sutter, E.G. and Epstein, E. 1997. Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci. 125: 153–162.

    Article  Google Scholar 

  69. Mauch, F., Mauch-Mani, B and Boller, T. 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and ß-1,3-glucanase. Plant Physiol. 88: 936–942.

    Article  PubMed  CAS  Google Scholar 

  70. McArthur, D.A. and Knowles, N.R. 1992. Resistance response of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorous levels. Plant Physiol. 100: 341–351.

    Article  PubMed  CAS  Google Scholar 

  71. McGaw, B.A. and Burch, L.R. 1995. Cytokinin biosynthesis and metabolism. In: Plant Hormones: Physiology, Biochemistry and Molecular Biology. P.J. Davies, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 98–117.

    Chapter  Google Scholar 

  72. Meyer, F.H. 1974. Physiology of mycorrhiza. Annu. Rev. Plant Physiol. 25: 567–586.

    Article  CAS  Google Scholar 

  73. Miksicek, R.J. 1993. Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 44: 37–43.

    PubMed  CAS  Google Scholar 

  74. Morris, R.O. 1995. Molecular aspects of hormone synthesis and action. In: Plant Hormones: Physiology, Biochemistry and Molecular Biology P.J. Davies, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 318–339.

    Google Scholar 

  75. Mosse, B. 1957. Growth and chemical composition of mycorrhizal and nonmycorrhizal apples. Nature. 179: 922–924.

    Article  CAS  Google Scholar 

  76. Nordby, H.E., Nemec, S. and Nagy, S. 1981. Fatty acids and sterols associated with Citrus root mycorrhizae. J. Agric. Food Chem. 29: 396–401.

    Article  CAS  Google Scholar 

  77. Parthier, B. 1991. Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Bot. Acta. 104: 446–454.

    CAS  Google Scholar 

  78. Patten, C.L. and Glick, B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can J. Microbiol. 4: 207–220.

    Article  Google Scholar 

  79. Poulin, M.-J., Simard, S., Catford, J.-G., Labrie, F. and Piché, Y. 1997. Response of symbiotic endomycorrhizal fungi to estrogens and antiestrogens. Mol. Plant Microbe Interact. 10: 481–487.

    Article  CAS  Google Scholar 

  80. Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–463.

    Article  CAS  Google Scholar 

  81. Redecker, D., Thierfelder, H. and Werner, D. 1995. A new cultivation system for arbuscular mycorrhizal fungi on glass beads. Angew. Bot. 69: 189–191.

    Google Scholar 

  82. Regvar, M. and Gogala, N. 1998. Effects of jasmonic acid and zeatin riboside on mycorrhized leek (Allium porrum).. In: Second International Conference on Mycorrhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Danell, P. Fransson, O. Kârrén, B. Lindahl, I. Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 144.

    Google Scholar 

  83. Regvar, M., Miersch, O. and Gogala, N. 1998. Determination of endogenous jasmonic acid content in mycorrhizal spruce plants.. In: Second International Conference on Mycorrhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Danell, P. Fransson, O. Kârén, B. Lindahl, I. Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 143.

    Google Scholar 

  84. Rodman, J E 1991. A taxonomic analysis of glucosinolate-producing plants, part I: Phenetics. Syst. Bot. 16: 598–618.

    Article  Google Scholar 

  85. Sauter, M. and Hager, A. 1989. The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its host Picea abies. Planta. 179: 61–66.

    Article  CAS  Google Scholar 

  86. Schmitz, O., Danneberg, G., Hundeshagen, B., Klingner, A. and Bothe, H. 1991. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J. Plant Physiol. 139: 106–111.

    Article  CAS  Google Scholar 

  87. Schreiner, R.P. and Koide, R.T. 1993. Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol. 123: 99–105.

    Article  CAS  Google Scholar 

  88. Shaul, O., Elad, Y., Chet, I. and Kapulnik, Y. 1998. Glomus intraradices-induced gene expression changes in tobacco leaves.. In: Second International Conference on Mycorrhiza, Uppsala, Sweden, July 5–10, 1998. Edited by: U. Ahonen-Jonnarth, E. Dane1l, P. Fransson, O. Kârén, B. Lindahl, I. Rangel and R. Finlay. SLU Service/repro, Uppsala. p. 157.

    Google Scholar 

  89. Smith, M.A., Davies, P.J. and Reid, J.B. 1985. Role of polyamines in gibberellin-induced internode growth in peas. Plant Physiol. 78: 92–99.

    Article  PubMed  CAS  Google Scholar 

  90. Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, P. and Bonfante-Fasolo, P. 1989. Chitinase in roots of mycorrhizal Album porrum: regulation and localization. Planta. 177: 447–455.

    Article  CAS  Google Scholar 

  91. Sutter, E.G. and Cohen, J.D. 1992. Measurement of indolebutyric acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol. 99: 1719–1722.

    Article  PubMed  CAS  Google Scholar 

  92. Tardieu, F., Zhang, J. and Gowing, D.J.G. 1993. Stomatal control by both [ABA] in the xylem sap and leaf water status–a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ. 16: 413–420.

    Article  CAS  Google Scholar 

  93. Tisserant, B., Gianinazzi, S. and Gianinazzi-Pearson, V. 1996. Relationships between lateral root order, arbuscular mycorrhiza development and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J. Bot. 74: 1947–1955.

    Article  Google Scholar 

  94. Tommerup, I.C. 1984. Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol. 98: 487–495.

    Article  Google Scholar 

  95. Van Rhijn, P., Fang, Y., Galili, S., Shaul, O., Atzmon, N., Wininger, S., Eshead, Y., Kapulnik, Y, Lum, M., Li, Y., To, V., Fujishige, N. and Hirsch, A.M. 1997. Signal transduction pathways in forming arbuscular-mycorrhizae and Rhizobium-induced nodules may be conserved based on the expression of early nodulin genes in alfalfa mycorrhizae. Proc. Natl. Acad. Sci. USA. 94: 5467–5472.

    Article  PubMed  Google Scholar 

  96. Vierheilig, H. and Ocampo, J.A. 1990. Role of root extracts and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis. 9: 199–202.

    Google Scholar 

  97. Vierheilig, H., Alt, M., Mohr, U., Boller, T. and Wiemken, A. 1994. Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J. Plant Physiol. 143: 337–343.

    Article  CAS  Google Scholar 

  98. Vierheilig, H., Bago, B., Albrecht, C., Poulin, M.-J. and Piché, Y. 1998. Flavonoids and arbuscular-mycorrhizal fungi. In: Flavonoids in the living system Manthey and Buslig, Eds., Plenum Press, New York, pp. 9–33.

    Google Scholar 

  99. Yano, K., Yamauchi, A. and Kono, Y. 1996. Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus. Mycorrhiza. 6: 409–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ludwig-Müller, J. (2000). Hormonal Balance in Plants During Colonization by Mycorrhizal Fungi. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics