Skip to main content

Applications of SQUID Magnetometers to Biomagnetism and Nondestructive Evaluation

  • Chapter
Book cover Applications of Superconductivity

Part of the book series: NATO ASI Series ((NSSE,volume 365))

Abstract

Since their introduction to biomagnetism in 1970, SQUID magnetometers have been used worldwide to measure magnetic signals from the heart, brain, lungs, liver, nerves, skeletal muscle, stomach, intestines, eyes, and other organs. The majority of the effort in the field has been by university and national-laboratory researchers and by small, high-technology companies, and has been directed towards the development and promotion of this technology. While a SQUID clearly is an accepted and productive research instrument, the application of this technology in routine clinical diagnosis is only now beginning. The challenge is to identify applications for which SQUIDs are ideally suited and there is minimal competition from other technologies. The introduction of high-temperature superconductor (HTS) SQUIDs has led to a resurgence, for example, in measurements of the magnetocardiogram by physicists and new searches for applications. Similar trends are evident in the use of SQUIDs for the nondestructive evaluation (NDE) of aircraft and other structural systems and materials: most of the effort is directed towards instrumentation development and demonstrations in simple systems. Instruments suitable for specific commercial applications are just now being prototyped, and there is a new generation of HTS SQUIDs for NDE. This chapter presents an overview of SQUID magnetometers for biomagnetism and NDE, reviews a number of pertinent applications of SQUIDs, and discusses the criteria for successful application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, D., Edelsack, E.A., and Zimmerman, J.E. (1970) Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer, Appl. Phys. Lett. 16 (7), 278–280.

    Google Scholar 

  2. Weinstock, H. and Nisenoff, M. (1985) Non-destructive evaluation of metallic structures using a SQUID gradiometer, in H.D. Hahlbohm and H. Lübbig (eds.), SQUID ‘85, Proc. 3rd International Conference on Superconducting Quantum Devices, de Gruyter, Berlin, pp. 843–847.

    Google Scholar 

  3. Wikswo, Jr., J.P. (1983) Theoretical aspects of the ECG-MCG relationship, in S.J. Williamson, G.-L. Romani, L. Kaufman, and I. Modena (eds.), Biomagnetism, An Interdisciplinary Approach, Plenum Press, New York, pp. 311–326.

    Google Scholar 

  4. Donaldson, G.B. (1980) SQUIDs for everything else, in H. Weinstock and M. Nisenoff (eds.), Superconducting Electronics, Springer-Verlag, New York, pp. 175–207.

    Google Scholar 

  5. Wikswo, Jr., J.P. (1990) Biomagnetic sources and their models, in S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani (eds.), Advances in Biomagnetism, Plenum Press, New York, pp. 1–18.

    Google Scholar 

  6. Weinstock, H. (1991) A review of SQUID magnetometry applied to nondestructive evaluation, IEEE Trans. Mag. 27 (2), 3231–3236.

    Google Scholar 

  7. Jenks, W.G., Sadeghi, S.S.H., and Wikswo, Jr., J.P. (1997) A review of SQUID magnetometers for non-destructive testing, J. Phys. D 30(3), 293–323.

    Google Scholar 

  8. Clarke, J. (1980) Principles and applications of SQUIDs, Proc. IEEE 77, 1208–1223.

    Google Scholar 

  9. Fagaly, R.L. (1990) Neuromagnetic instrumentation, in S. Sato (ed.), Advances in Neurology, Raven Press, New York, vol. 54, pp. 11–32.

    Google Scholar 

  10. Wikswo, Jr., J.P. (1996) High-resolution magnetic imaging: Cellular action currents and other applications, in H. Weinstock (ed.), SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic Publishers, Netherlands, pp. 307–360.

    Google Scholar 

  11. Wikswo, Jr., J.P. (1996) The magnetic inverse problem for NDE, in H. Weinstock (ed.), SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic Publishers, Netherlands, pp. 629–695.

    Google Scholar 

  12. Andrä, W. and Nowak, H. (1998) Magnetism in Medicine: A handbook, Wiley-VCH, New York.

    Google Scholar 

  13. Kirtley, J.R. and Wikswo, Jr., J.P. (1999) Scanning SQUID microscopy, Annu. Rev. Mater. Sci. 29, 117–148.

    Google Scholar 

  14. Lounasmaa, O.V. (1996) Medical applications of SQUIDs in neuro-and cardiomagnetism, Physica Scripta T66, 70–79.

    Google Scholar 

  15. Gulrajani, R.M. (1998) Bioelectricity and Biomagnetism,.John Wiley, New York.

    Google Scholar 

  16. Wikswo, Jr., J.P. (1995) SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers, IEEE Trans. Applied Supercond. 5 (2), 74–120.

    Google Scholar 

  17. Cohen, D. (1972) Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer, Science 175, 664–666.

    Google Scholar 

  18. Okada, Y.C. (1983) Neurogenesis of evoked magnetic fields, in S.J. Williamson, G: L. Romani, L. Kaufman, and I. Modena (eds.), Biomagnetism, An Interdisciplinary Approach, Plenum Press, New York, pp. 399–408.

    Google Scholar 

  19. Vrba, J., Angus, V., Betts, K., Burbank, M.B., Cheung, T., Fife, A.A., Haid, G., Kubik, P.R., Lee, S., Ludwig, W., McCubbin, J., McKay, J., McKenzie, D., Robinson, S.E., Smith, M., Spear, P., Taylor, B., Tillptson, M., Cheyne, D., and Weinberg, H. (1996) 143 channel whole-cortex MEG system, Proc. 10th Inter. Conf. on Bio-magnetism,Sante Fe, p. 346.

    Google Scholar 

  20. Zeng, X.H., Soltner, H., Selbig, D., Bode, M., Bick, M., Ruders, F., Schubert, J., Zander, W., Banzet, M., Zhang, Y., Bousack, H., and Braginski, A.I. (1998) A high-temperature rf SQUID system for magnetocardiography, Measurement Science and Technology 9, 1600–1608.

    Google Scholar 

  21. Drung, D. (1995) The PTB 83-SQUID system for biomagnetic applications in a clinic, IEEE Trans. Applied Supercond. 5 (3), 1051–8223.

    Google Scholar 

  22. Fischer, R. (1998) Liver iron susceptometry, in W. Andrä and H. Nowak (eds.), Magnetism in Medicine: A handbook, Wiley-VCH, New York, pp. 286–301.

    Google Scholar 

  23. Kalliomaki, P.-L., Korhonen, O., Vaaranen, V., Kalliomaki, K., and Koponen, M. (1978), Lung Retention and Clearance of Shipyard Arc Welders, Internat. Arch. Occupational and Environmental Health 42 83–90.

    Google Scholar 

  24. Kötitz, R., Fannin, P.C., and Trahms, L. (1995) Time domain study of Brownian and Néel relaxation in ferrofluids, J. Magnetism and Magnetic Materials 149, 42–46.

    Google Scholar 

  25. Kötitz, R., Weitschies, W., Trahms, L., and Semmler, W. (1999) Investigation of Brownian and Néel relaxation in magnetic fields, J. Magnetism and Magnetic Materials 201, 102–104.

    Google Scholar 

  26. Kötitz, R., Weitschies, W., Trahms, L, Brewer, W., and Semmler, W. (1999) Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles, J. Magnetism and Magnetic Materials 194 (1–3), 62–68.

    Google Scholar 

  27. Ugelstad, J., Prestvik, W.S., Stenstad, P., Kilaas, L., and Kvalheim, G. (1998) Selective cell separation with monosized magnetizable polymer beads, in W. Andrä and H. Nowak (eds.), Magnetism in Medicine: A handbook, Wiley-VCH, New York, pp. 471–488.

    Google Scholar 

  28. Wikswo, Jr., J.P., Ma, Y.P., Sepulveda, N.G., Tan, S., Thomas, I.M., and Lauder, A. (1993) Magnetic susceptibility imaging for nondestructive evaluation, IEEE Trans. Applied Supercond. 3 (1), 1995–2002.

    Google Scholar 

  29. Roth, B.J., Sepulveda, N.G., and Wikswo, Jr.,,J.P. (1989) Using a magnetometer to image a two-dimensional current distribution, J. Appl. Phys. 65, 361–372.

    Google Scholar 

  30. Fagaly, R.L. (1989) SQUID detection of electronic circuits, IEEE Trans. Mag. 25, 1204–1218.

    Google Scholar 

  31. Zhuravlev, Y.E., Bakharev, A.A., Matlashov, A.N., Slobodchikov, V.Y., Velt, I.D., Nikulin, S.L., and Kalashnikov, R.V. (1992) Application of do-SQUID magnetometers for nondestructive testing of multilayer electronic cards, in H. Koch and H. Lübbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, vol. 64, pp. 581–583.

    Google Scholar 

  32. Tan, S., Ma, Y.P., Thomas, I.M., and Wikswo, Jr., J.P. (1993) High resolution SQUID imaging of current and magnetization distributions IEEE Trans. Applied Supercond. 3(1) 1945–1948.

    Google Scholar 

  33. Thomas, I.M., Moyer, T.C., and Wikswo, Jr., J.P. (1992) High resolution magnetic susceptibility imaging of geological thin sections: Pilot study of a pyroclastic sample from the Bishop tuff, Geophys. Res. Lett. 19 (21), 2139–2142.

    Google Scholar 

  34. Kirschvink, J.L. (1997) Magnetoreception: Homing in on vertebrates, Nature 390 (6658), 339–340.

    Google Scholar 

  35. Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., and Green, C.R. (1997) Structure and function of the vertebrate magnetic sense, Nature 390 (6658), 371–376.

    Google Scholar 

  36. Thomas, I.M., Ma, Y.P., and Wikswo, Jr., J.P. (1993) SQUID NDE: Detection of surface flaws by magnetic decoration, IEEE Trans. Applied Supercond. 3(1), 19491952.

    Google Scholar 

  37. Weinstock, H., Tralshawala, N., and Claycomb, J.R. (1999) Defect detection in wire manufacturing, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 18B, 2265–2277.

    Google Scholar 

  38. Ma, Y.P. and Wikswo, Jr., J.P. (1992) Detection of a deep flaw inside a conductor using a SQUID magnetometer, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 11A, pp. 1153–1159.

    Google Scholar 

  39. Ma, Y.P. and Wikswo, Jr., J.P. (1993) Imaging subsurface defects using SQUID magnetometers, in D.O. Thompson and D E Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 12A, pp. 1137–1143.

    Google Scholar 

  40. Hurley, D.C., Ma, Y.P., Tan, S., and Wikswo, Jr., J.P. (1993) Imaging of small defects in nonmagnetic tubing using a SQUID magnetometer, Res. Nondestr. Eval. 5, 1–29.

    Google Scholar 

  41. Wikswo, Jr., J.P., Ma, Y.P., Sepulveda, N.G., Staton, D.J., Tan, S., and Thomas, I.M. (1993) Superconducting magnetometry: A possible technique for aircraft NDE, in M.T. Valley, N.K. Grande, and A.S. Kobayashi (eds.), Nondestructive Inspection of Aging Aircraft, SPIE Proceedings, vol. 2001, pp. 164–190.

    Google Scholar 

  42. Wikswo, Jr., J.P. (1997) SQUID magnetometers for studying corrosion and corrosion protection in aircraft aluminum, NAGE International, Paper No. 293, pp. 1–17.

    Google Scholar 

  43. Ma, Y.P. and Wikswo, Jr., J.P. (1993) Detection of subsurface flaws using SQUID eddy current technique, in M.T. Valley, N.K. Grande, and A.S. Kobayashi (eds.), Nondestructive Inspection of Aging Aircraft, SPIE Proceedings, vol. 2001, pp. 191199.

    Google Scholar 

  44. Podney, W. (1994) A superconductive electromagnetic microscope for eddy current evaluation of materials, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 13B, pp. 1947–1954.

    Google Scholar 

  45. Ma, Y.P. and Wikswo, Jr., J.P. (1994) SQUID eddy current techniques for detection of second layer flaws, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 13A, pp. 303–309.

    Google Scholar 

  46. Banchet, J., Jouglar, J., Vuillermoz, P.-L., Waltz, P., and Weinstock, H. (1995) Evaluation of stress in steel via SQUID magnetometry, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 14B, pp. 1675–1682.

    Google Scholar 

  47. Thomas, I.M., Ma, Y.P., Tan, S., and Wikswo, Jr., J.P. (1993) Spatial resolution and sensitivity of magnetic susceptibility imaging, IEEE Trans. Applied Supercond. 3 (1), 1937–1940.

    Google Scholar 

  48. Wikswo, Jr., J.P. and van Egeraat, J.M. (1991) Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle, J. Clin. Neurophysiol. 8 (2), 170–188.

    Google Scholar 

  49. Deeter, M.N., Rose, A.H., and Day, G.W. (1990) Iron-garnet magnetic field sensors with 100 pT/Hz1/2 noise-equivalent field, Proc. 7th Int. Conf. Optical Fiber Sensors, Sydney.

    Google Scholar 

  50. Deeter, M.N., Rose, A.H., and Day, G.W. (1991) Sensitivity limits to ferromagnetic Faraday effect magnetic field sensors, J. Appl. Phys. 70 (10), 6407–6409.

    Google Scholar 

  51. Deeter, M.N., Day, G.W., Beahn, T.J., and Manheimer, M. (1993) Magneto-optic field sensor with 1.4 pT/Hz1/2 minimum detectable field at 1 kHz, Electron. Lett. 29, 993–994.

    Google Scholar 

  52. Smith, N., Jeffers, F., and Freeman, J. (1991) A high-sensitivity magnetoresistive magnetometer, J. Appl. Phys. 69 (8), 5082–5084.

    Google Scholar 

  53. Thompson, C.A., Cross, R.W., and Kos, A.B. (1994) Micromagnetic scanning microprobe system, Rev. Sci. Instrum. 65 (2), 383–389.

    Google Scholar 

  54. Mahendiran, R. and Raychaudhuri, A.K. (1995) Low temperature linear magnetic field sensor based on magnetoresistance of the perovskite oxide La-Sr-Co-O, Rev. Sci. Instrum. 66, 3071–3072.

    Google Scholar 

  55. Yamamoto, S. and Schultz, S. (1996) Scanning magnetoresistance microscopy, Appl. Phys. Lett. 69, 3263–3265.

    Google Scholar 

  56. Schwarzacher, S. and Lashmore, D.S. (1996) Giant magnetoresistance in electrode-posited films, IEEE Trans. Mag. 32 (4), 3133–3153.

    Google Scholar 

  57. Non-Volatile Electronics, Inc., Eden Prairie, MN.

    Google Scholar 

  58. Jenks, W.G, Thomas, I.M., and Wikswo, Jr., J.P. (1997) SQUIDs, in G.L. Trigg, E.S. Vera, and W. Greulich (eds.), Encyclopedia of Applied Physics, VCH Publishers, Inc., New York, vol. 19, pp. 457–468.

    Google Scholar 

  59. Zimmerman, J.E. and Silver, A.H. (1964) Quantum effects in type II superconductors, Phys. Lett. 10 (1), 47–48.

    Google Scholar 

  60. Jaklevic, R.C., Lambe, J., Mercereau, J.E., and Silver, A.H. (1965) Macroscopic quantum interference in superconductors, Physical Review 140 (5A), A1628 - A1637.

    Google Scholar 

  61. See chapter by J. Clarke, this volume.

    Google Scholar 

  62. Zhang, Y., Krüger, U., Kutzner, R., Wördenweber, R., Schubert, J., Zander, W., Strupp, M., Sodtke, E., and Braginski, A.I. (1994) Single-layer YBa2Cu3O7 rf SQUID magnetometers with direct-coupled pickup coils and flip-chip flux transformers, Appl. Phys. Lett. 65, 3380–3382.

    Google Scholar 

  63. Ludwig, F., Dantsker, E., Kleiner, R., Koelle, D., Clarke, J., Knappe, S., Drung, D., Koch, H., Alford, N., and Button, T.W. (1995) Integrated high-Tc multiloop magnetometer, Appl. Phys. Lett. 66, 1418–1420.

    Google Scholar 

  64. Burghoff, M., Trahms, L., Zhang, Y., Bousack, H., and Borgmann, J. (1996) Diagnostic application of high-temperature SQUIDS, J. Clin. Engr. 21 (1), 62–66.

    Google Scholar 

  65. Cochran, A., Macfarlane, J.C., Morgan, L.N.C., Kuznik, J., Weston, R., Hao, L., Bowman, R.M., and Donaldson, G.B. (1994) Using a 77 K SQUID to measure magnetic fields for NDE, IEEE Trans. Applied Supercond. 4 (3), 128–135.

    Google Scholar 

  66. Morgan, L.N.C., Carr, C., Cochran, A., McKirdy, D.McA., and Donaldson, G.B. (1995) Electromagnetic nondestructive evaluation with simple HTS SQUIDS: Measurements and modelling, IEEE Trans. Applied Supercond. 5 (2), 3127–3130.

    Google Scholar 

  67. Grüneklee, M., Krause, H.-J., Hohmann, R., Maus, M., Lomparski, D., Banzet, M., Schubert, J., Zander, Y., Zhang, Y., Wolf, W., Bousack, H., and Braginski, A.I. (1998) HTS SQUID system for eddy current testing of airplane wheels and rivets, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 17A, pp. 1075–1082.

    Google Scholar 

  68. Chatraphorn, S., Fleet, E.F., and Wellstood, F.C. (1999) High-T, scanning SQUID microscopy: Imaging integrated circuits beyond the standard near-field limit, Bull. Am. Phys. Soc. 44(1) Part II, 1554 (Abstract).

    Google Scholar 

  69. Fleet, E.F., Chatraphorn, S., and Wellstood, F.C. (1999) HTS SQUID microscopy of eddy currents, Bull. Am. Phys. Soc. 44(1) Part II, 1554 (Abstract).

    Google Scholar 

  70. http://www.neocera.com/html-files/magma/magma.htm

    Google Scholar 

  71. Drung, D. Crocoll, E., Herwig, R., Neuhas, M., and Jutzi, W. (1989) Measured performance parameters of gradiometers with digital output, IEEE Trans. Mag. 25 1034–1037.

    Google Scholar 

  72. Vrba, J., Betts, K., Burbank, M., Cheung, T., Cheyne, D., and Fife, A.A. (1995) Whole cortex 64 channel system for shielded and unshielded environments, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Proc. of the 9th Inter. Conf. on Biomagnetism, Vienna, pp. 521–525.

    Google Scholar 

  73. Zimmermann, E., Brandenburg, G., Clemens, U., Rongen, H., Hailing, H., Krause, H.-J., Hohmann, R., Soltner, H., Lomparski, D., Grüneklee, M., Husemann, K.-D., Bousack, H., Braginski, A.I. (1997) HTS-SQUID magnetometer with digital feedback control for NDE applications, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 16B, pp. 2129–2135.

    Google Scholar 

  74. Fujimaki, N., Tamura, H., Suzuki, H., Imamura, T., Hasuo, S., and Shibatomi, A. (1988) A single-chip SQUID magnetometer, IEEE Trans. Elect. Dev. 35, 2412–2417.

    Google Scholar 

  75. Radparvar, M. (1994) A wide dynamic range single-chip SQUID magnetometer, IEEE Trans. Applied Supercond. 4, 87–91.

    Google Scholar 

  76. Radparvar, M. and Rylov, S. (1995) A single-chip SQUID magnetometer with high sensitivity input, IEEE Trans. Applied Supercond. 5, 2142–2145.

    Google Scholar 

  77. Radparvar, M. and Rylov, S. (1997) High sensitivity digital SQUID magnetometers, IEEE Trans. Applied Supercond. 7, 3682–3685.

    Google Scholar 

  78. See chapter by K.K. Likharev, this volume.

    Google Scholar 

  79. Wikswo, Jr., J.P. (1995) Closing Comments: Recent developments in 5 K cryocoolers–An outsider’s view, 5 K Cryocooler Workshop: Present Status, Future Prospects and Market Potential for 4–5 K Cryocoolers Proceedings, Hypres, Inc., Elmsford, NY, pp. 58–66.

    Google Scholar 

  80. Klemic, G.A., Buchanan, D.S., Cycoqicz, Y.M., and Williamson, S.J. (1990) Sequential spatially distributed activity of the human brain detected magnetically by CryoSQUIDs, in S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani (eds.), Advances in Biomagnetism, Plenum Press, New York, pp. 685–688.

    Google Scholar 

  81. Buchanan, D.S., Paulson, D., and Williamson, S.J. (1988) Instrumentation for clinical applications of neuromagnetism, in R.W. Fast (ed.), Advances in Cryogenic Engineering, Plenum Press, New York, vol. 33, pp. 97–106.

    Google Scholar 

  82. Podney, W.N. (1993) Performance measurements of a superconductive microprobe for eddy current evaluation of subsurface flaws, IEEE Trans. Applied Supercond. 3 (1), 1914–1917.

    Google Scholar 

  83. Hohmann, R., Lienerth, C., Zhang, Y., Bousack, H., Thummes, G., and Heiden, C. (in press, 1999) Comparison of low noise cooling performance of a Joule-Thompson cooler and a pulse-tube cooler using a HT SQUID, IEEE Trans. Applied Supercond.

    Google Scholar 

  84. Little, W.A. (1984) Microminiature refrigeration, Rev. Sci. Instrum. 55, 661–680.

    Google Scholar 

  85. Little, W.A. (1990) Advances in Joule-Thomson cooling, Adv. Cryogenic Engr. 35, 1305–1314.

    Google Scholar 

  86. Kajiwara, G., Harakawa, K., and Ogata, H. (1996) High-performance magnetically shielded room, IEEE Trans. Mag. 32, 2582–2585.

    Google Scholar 

  87. Drung, D. (1992) Investigation of a double-loop do-SQUID magnetometer with additional positive feedback (for biomagnetic applications), in H. Koch and H. Lübbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, vol. 64, pp. 351–356.

    Google Scholar 

  88. Trahms, Lutz, PTB, personal communication.

    Google Scholar 

  89. Romani, G.L., Williamson, S.J., and Kaufman, L. (1982) Biomagnetic instrumentation, Rev. Sci. Instrum. 53, 1815–1845.

    Google Scholar 

  90. Wikswo, Jr., J.P. (1978) Optimization of SQUID differential magnetometers, AIP Conf. Proc. 44, 145–149.

    Google Scholar 

  91. Cochran, A., Donaldson, G.B., Evanson, S., and Bain, R.J.P. (1993) First-generation SQUID-based nondestructive testing system, IEE Proceedings-A 140 (2), 113–120.

    Google Scholar 

  92. Zimmerman, J.E. (1977) SQUID instruments and shielding for low-level magnetic measurements, J. Appl. Phys. 48 (2), 702–710.

    MathSciNet  Google Scholar 

  93. Tsukada, K. and Haruta, Y. (1995) Multichannel SQUID system detecting tangential components of the cardiac magnetic field, Rev. Sci. Instrum. 66 (10), 5085–5091.

    Google Scholar 

  94. Sepulveda, N.G. and Wikswo, Jr., J.P. Differential operators and their applications to magnetic measurements using SQUID magnetometers, unpublished.

    Google Scholar 

  95. http.//www.neuromag.com

    Google Scholar 

  96. Vrba, J., Taylor, B., Cheung, T., Fife, A.A., Haid, G., Kubik, P.R., Lee, S., McCubbin, J., and Burbank, M.B. (1995) Noise cancellation by a whole-cortex SQUID MEG system, IEEE Trans. Applied Supercond. 5 (2), 2118–2123.

    Google Scholar 

  97. Robinson, Steve, personal communication.

    Google Scholar 

  98. Drung, D. (1992) Performance of an electronic gradiometer, in H. Koch and H. Lübbig (eds.), Superconducting Devices and their Applications, Springer-Verlag, New York, vol. 64, pp. 542–546.

    Google Scholar 

  99. Tavrin, Y., Zhang, Y., Mück, M., Braginski, A.I., and Heiden, C. (1993) YBa2Cu3O7 thin film SQUID gradiometer for biomagnetic measurements, Appl. Phys. Lett. 62 (15), 1824–1826.

    Google Scholar 

  100. Tavrin, Y., Zhang, Y., Wolf, W., and Braginski, A.I. (1994) A second-order SQUID gradiometer operating at 77 K, Supercond. Sci. Technol. 7, 265–268.

    Google Scholar 

  101. Koch, R.H. (1992) Gradiometer having a magnetometer which cancels background magnetic field from other magnetometers, U.S. Patent 5, 122–744.

    Google Scholar 

  102. Koch, R.H., Rozen, J.R., Sun, J.Z., and Gallagher, W.J. (1993) Three SQUID gradiometer, Appl. Phys. Lett. 63 (3), 403–405.

    Google Scholar 

  103. Ter Brake, H.J.M., Flokstra, J., Jaszczuk, W., Stammis, R., van Ancum, G.K., Martinez, A., and Rogalla, H. (1991) 19 UT 19-channel dc SQUID based neuro-magnetometer, Clin. Phys. and Physiol. Meas. 12(Suppl. B) 45–50.

    Google Scholar 

  104. Matlashov, A.N., Slobodchikov, V.Y., Bakharev, A.A., Zhuravlev, Y.E., and Bondarenko, N. (1995) Biomagnetic multichannel system built with 19 cryogenic probes, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Proc. 9th Inter. Conf. on Biomagnetism, Vienna, pp. 493–496.

    Google Scholar 

  105. Matlashov, A., Zhuravlev, Y., Slobodchikov, V., Bondarenko, N., Bakharev, A., and Rassi, D. (1995) Miniature dc SQUID magnetometers for clinical use, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Proc. 9th Inter. Conf. on Biomagnetism, Vienna, pp. 526–529.

    Google Scholar 

  106. Dössel, O., David, B., Fuchs, M., Krüger, J., Lüdeke, K.-M., and Wischmann, H.-A. (1993) A 31-channel SQUID system for biomagnetic imaging, Applied Supercond. 1 (10–12), 1813–1825.

    Google Scholar 

  107. Yamasaki, S., Morooka, T., Matsuda, N., Kawai, J., Mizutani, N., Tsukada, K., Uehara, G., and Kado, H. (1993) Design and fabrication of multichannel dc SQUIDs for biomagnetic applications, IEEE Trans. Applied Supercond. 3, 1887–1889.

    Google Scholar 

  108. Romani, Gian Luca, personal communication.

    Google Scholar 

  109. http://www.ctf.com

    Google Scholar 

  110. Hirschkoff, Gene, Biomagnetic technologies, Inc., personal communication.

    Google Scholar 

  111. Ueda, M., Kandori, A., Ogata, H., Takada, Y., Komuro, T., Kazami, K., and Ito, T. (1995) Development of a biomagnetic measurement system for brain research, IEEE Trans. Applied Supercond. 5 (2), 2465–2469.

    Google Scholar 

  112. Kado, H., Higuchi, M., Shimogawara, Y., Haruta, Y., Adachi, J., Kawai, H., and Uehara, G. (in press) Magnetoencephalogram systems developed at KIT, IEEE Trans. Applied Supercond.

    Google Scholar 

  113. Tan, S., Roth, B.J., and Wikswo, Jr., J.P. (1990) The magnetic field of cortical current sources: The application of a spatial filtering model to the forward and inverse problems, Electroenceph. clin. Neurophysiol. 76, 73–85.

    Google Scholar 

  114. Matlashov, A., Bakharev, A., Zhuravlev, Y., and Slobdobchikov, V. (1992) Biomagnetic multi-channel system consisting of several self-contained autonomous small-size units, in H. Koch and H. Lübbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, vol. 6, pp. 511–516.

    Google Scholar 

  115. Matlashov, A.N. (1993) New approaches to biomagnetic measurements and signal processing, International Journal of Applied Electromagnetics in Materials, Elsevier, Amsterdam, vol. 4, pp. 185–188.

    Google Scholar 

  116. Wikswo, Jr., J.P. (1988) High-resolution measurements of biomagnetic fields, in R.W. Fast (ed.), Advances in Cryogenic Engineering, vol. 33, pp. 107–116.

    Google Scholar 

  117. Cochran, A. and Donaldson, G.B. (1992) Improved techniques for structural NDT using SQUIDs, in H. Koch and Lübbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, vol. 64, pp. 576–581.

    Google Scholar 

  118. Hibbs, A.D., Sager, R.E., Cox, D.W., Aukerman, T.H., Sage, T.A., and Landis, R.S. (1992) A high-resolution magnetic imaging system based on a SQUID magnetometer, Rev. Sci. Instrum. 63 (7), 3652–3658.

    Google Scholar 

  119. Hibbs, A., Chung, R., and Pence, J.S. (1994) Corrosion measurements with a high resolution scanning magnetometer, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 13B, pp. 1955–1962.

    Google Scholar 

  120. Wikswo, Jr., J.P., van Egeraat, J.M., Ma, Y.P., Sepulveda, N.G., Staton, D.J., Tan, S., and Wijesinghe, R.S. (1990) Instrumentation and techniques for high-resolution magnetic imaging, in A.F. Gmitro, P.S. Idell, and I.J. LaHaie (eds.), Digital Image Synthesis and Inverse Optics, SPIE Proceedings, vol. 1351, pp. 438–470.

    Google Scholar 

  121. Ma, Y.P. and Wikswo, Jr., J.P. (1991) Magnetic shield for wide-bandwidth magnetic measurements for nondestructive testing and biomagnetism, Rev. Sci. Instrum. 62 (11), 2654–2661.

    Google Scholar 

  122. Abedi, A., Fellenstein, J.J., Lucas, A.J., and Wikswo, Jr., J.P. (in press) A SQUID magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum structures, Rev. Sci. Instrum.

    Google Scholar 

  123. Brenner, D., Williamson, S.J., and Kaufman, L. (1975) Visually evoked magnetic fields of the human brain, Science 190, 480–482.

    Google Scholar 

  124. Brenner, D., Lipton, J., Kaufman, L., and Williamson, S.J. (1978) Somatically evoked magnetic fields of the human brain, Science 199, 81–83.

    Google Scholar 

  125. Romani, G.L., Williamson, S.J., and Kaufman, L. (1982) Tonotopic organization of the human auditory cortex, Science 216, 1339–1340.

    Google Scholar 

  126. Maclin, E., Okada, Y.C., Kaufman, L., and Williamson, S.J. (1983) Retinotopic map on visual cortex for eccentrically placed patterns: First noninvasive measurement, Il Nuovo Cimento 2D, 410–419.

    Google Scholar 

  127. Schlitt, H.A., Heller, L., Aaron, R., Best, E., and Ranken, D.M. (1995) Evaluation of boundary element methods for the EEG forward problem: Effect of linear interpolation, IEEE Trans. Biomed. Eng. 42 (1), 52–58.

    Google Scholar 

  128. Schlitt, H.A., Heller, L., Best, E., Ranken, D.M., and Aaron, R. (1994) Effect of conductor geometry on source localization: Implications for epilepsy studies, in N. Tepley (ed.), NABMAG2 - Proceedings of the Second North American Biomagnetism Action Group Meeting, Henry Ford Hospital, Detroit, Michigan.

    Google Scholar 

  129. Maurer, Jr., C.R., Aboutanos, G.B., Dawant, B.M., Gadamsetty, S., Margolin, R.A., Maciunas, R.J., and Fitzpatrick, J.M. (1994) Effect of geometrical distortion correction in MR on image registration accuracy, in Medical Imaging VIII: Image Processing, SPIE Proceedings, vol. 2167, pp. 200–213.

    Google Scholar 

  130. Ebersole, J.S. (1991) EEG dipole modeling in complex partial epilepsy, Brain Topog. 4 (2), 113–123.

    Google Scholar 

  131. Cooper, R., Winter, A.L., Crow, H.J., and Walter, W.G. (1969) Comparison of subcortical, cortical, and scalp activity using chronically indwelling electrodes in man, Electroenceph. clin. Neurophysiol. 18, 217–228.

    Google Scholar 

  132. Mosher, J.C., Lewis, P.S., and Leahy, R.M. (1992) Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng. 39 (6), 541–557.

    Google Scholar 

  133. Gorodnitsky, I.F., George, J.S., and Rao, B.D. (1995) Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm, Electroencephal. clin. Neurophysiol. 95 (4), 231–251.

    Google Scholar 

  134. Gorodnitsky, I.F. and Rao, B.D. (1997) Sparse signal reconstruction from limited data using FOCUSS: A recursive weighted minimum norm algorithm, IEEE Trans. on Sig. Processing 45 (3), 600–616.

    Google Scholar 

  135. Robinson, S.E. and Vrba, J. (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM), Proc. 11th Inter. Conf. on Biomagnetism, Sendai, Japan, pp. 302–305.

    Google Scholar 

  136. Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., Hirabuki, N., Asada, H., Kihara, T., Robinson, S.E., and Takeda, M. (1999) Medial prefrontal cortex generates frontal midline theta rhythm, NeuroReport 10 (4), 675–679.

    Google Scholar 

  137. Wang, J.-Z., Williamson, S.J., and Kaufman, L. (1995) Kinetic images of neuronal activity of the human brain based on the spatio-temporal MNLS inverse: A theoretical study, Brain Topog. 7 (3), 193–200.

    Google Scholar 

  138. Gençer, N.G. and Williamson, S.J. (1997) Magnetic source images of human brain functions, Behavior Res. Meth. Instrum. and Comp. 29 (1), 78–83.

    Google Scholar 

  139. Wikswo, Jr., J.P., Crum, D.B., Henry, W.P., Ma, Y.P., Sepulveda, N.G., and Sta-ton, D.J. (1993) An improved method for magnetic identification and localization of cracks in conductors, J. Nondestr. Eval. 12 (2), 109–119.

    Google Scholar 

  140. Ma, Y.P. and Wikswo, Jr., J.P. The magnetic field produced by an elliptical flaw in a current carrying plate, in preparation.

    Google Scholar 

  141. Ma, Y.P. and Wikswo, Jr., J.P. Magnetic field of a subsurface spherical flaw inside a current-carrying conductor, in preparation.

    Google Scholar 

  142. Ewing, A.P., Hall Barbosa, C., Cruse, T.A., Bruno, A.C., and Wikswo, Jr., J.P. (1998) Boundary integral equations for modeling arbitrary flaw geometries in electric current injection NDE, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 17A, pp. 1011–1015.

    Google Scholar 

  143. Hurley, D.C., Ma, Y.P., Tan, S., and Wikswo, Jr., J.P. (1993) A comparison of SQUID imaging techniques for small defects in nonmagnetic tubes, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 12A, pp. 633–640.

    Google Scholar 

  144. Cruse, T.A., Ewing, A.P., and Wikswo, Jr., J.P. (1999) Green’s function formulation of Laplace’s equation for electromagnetic crack detection, Computational Mechanics 23 (5/6), 420–429.

    MATH  Google Scholar 

  145. Ewing, A.P., Cruse, T.A., and Wikswo, Jr., J.P. (1998) A SQUID NDE measurement model using BEM, in D.O. Thompson and D E Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 17A, pp. 1083–1090.

    Google Scholar 

  146. Ewing, A.P., Cruse, T.A., and Wikswo, Jr.,.J.P. A boundary element measurement model for SQUID nondestructive evaluation: An experimental comparison, unpublished.

    Google Scholar 

  147. Ewing, A.P., Cruse, T.A., and Wikswo, Jr.,.J.P. Using a SQUID measurement model for sensitivity analysis to determine probability of detection, unpublished.

    Google Scholar 

  148. Lü, Z.-L., Williamson, S.J., and Kaufman, L. (1992) Human auditory primary and association cortex having differing lifetimes for activation traces, Brain Res. 527, 236–241.

    Google Scholar 

  149. Kaufman, L., Curtis, S., Wang, J.-Z., and Williamson, S.J. (1992) Changes in cortical activity when subjects scan memory for tones, Electroenceph. clin. Neurophysiol. 82, 266–284.

    Google Scholar 

  150. Hari, R., Salmelin, R., Tissari, S.O., Kajola, M., and Virsu, V. (1994) Visual stability during picture naming, Nature 367, 121–122.

    Google Scholar 

  151. Salmelin, R., Hari, R., Lounasmaa, O.V., and Sams, M. (1994) Dynamics of brain activation during picture naming, Nature 368, 463–465.

    Google Scholar 

  152. Yang, T.T., Gallen, C.C., Schwartz, B.J., and Bloom, F.E. (1993) Noninvasive somatosensory homunculus mapping in humans by using a large-array biomagnetometer, Proc. Natl. Acad. Sci. USA 90, 3098–3102.

    Google Scholar 

  153. Yang, T.T., Gallen, C., Schwartz, B., Bloom, F.E., Ramachandran, V.S., and Cobb, S. (1994) Sensory maps in the human brain, Nature 368, 592–593.

    Google Scholar 

  154. Romani, G.L., Del Gratta, C., Pizzella, V. (1996) Neuromagnetism and its clinical applications, in H. Weinstock (ed.), SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic Publishers, Netherlands, pp. 445–490.

    Google Scholar 

  155. Wakai, R.T., Wang, M., and Martin, C.B. (1994) Spatiotemporal properties of the fetal magnetocardiogram, Am. J. Obstet. Gynecol. 170 (3), 770–776.

    Google Scholar 

  156. Zhuravlev, Y.E., Rassi, D., and Emery, S.J. (in press, 1999) Clinical assessment of fetal magnetocardiography, IEEE Trans. Applied Supercond.

    Google Scholar 

  157. Lowery, C., Robinson, S., Eswaran, H., Vrba, J., Haid, V., and Cheung, T. (1999) Detection of the transient and steady-state auditory evoked responses in the human fetus, Proc. 11th Inter. Conf. on Biomagnetism, Sendai, Japan, pp. 963–966.

    Google Scholar 

  158. Burghoff, M., Curio, G., Haberkorn, W., Mackert, B.-M., and Trahms, L. (1994) Quellenbildgebung aus biomagnetischen Feldern peripherer Nerven. Proceedings of the Congress, Biomedizinische Technik.

    Google Scholar 

  159. Mackert, B.-M., Curio, G., Burghoff, M., and Marx, P. (1997) Mapping of tibial nerve evoked magnetic fields over the lower spine, Electroenceph. clin. Neurophysiol. 104 (4), 322–327.

    Google Scholar 

  160. Mackert, B.-M., Curio, G., Burghoff, M., Trahms, L., and Marx, P. (1998) Magnetoneurographic 3D-localization of conduction blocks in patients with unilateral S1 root compression, Electroenceph. clin. Neurophysiol. 109, 315–320.

    Google Scholar 

  161. Golzarian, J., Staton, D.J., Wikswo, Jr., J.P., Friedman, R.N., and Richards, W.O. (1994) Diagnosing intestinal ischemia using a noncontact superconducting quantum interference device, Am. J. Surgery 167, 586–592.

    Google Scholar 

  162. Modena, I., Ricci, G.B., Barbanera, S., Leoni, R., Romani, G.L., and Carelli, P. (1982) Biomagnetic measurements of spontaneous brain activity in the brain following repetitive sensory stimulation, Electroenceph. clin. Neurophysiol. 54, 622–628.

    Google Scholar 

  163. Barth, D.S., Sutherling, W., Engel, Jr., J., and Beatty, J. (1982) Neuromagnetic localization of epileptiform spike activity in the human brain, Science 218, 891–894.

    Google Scholar 

  164. Hari, R., Ahonen, A., Forss, N., Granström, M.-L., Hämäläinen, M., Kajola, M., Knuutila, J., Lounasmaa, O.V., Makela, J.P., and Paetau, R., Salmelin, R., and Simola, J. (1993) Parietal epileptic mirror focus detected with a whole-head neuro-magnetometer, NeuroReport 5 (1), 45–48.

    Google Scholar 

  165. Orrison, W.W. and Lewine, J.D. (1993) Magnetic source imaging in neurosurgical practice, Prospectives in Neurosurgical Surgery 4(2), 141–147.

    Google Scholar 

  166. Benzel, E.C., Lewine, J.D., Bucholz, R.D., and Orrison, W.W. (1993) Magnetic source imaging: A review of the Magnes system of Biomagnetics Technology Incorporated, Neurosurg. 33, 252–259.

    Google Scholar 

  167. Lewine, J.D. and Orrison, W.W. (1995) Magnetoencephalography amd Magnetic Source Imaging, in W.W. Orrison, J.D. Lewine, J.A. Sanders, and M. Hartshorne (eds.), Functional Brain Imaging, Mosby Yearbooks, St. Louis, pp. 369–416.

    Google Scholar 

  168. Barkley, G.L., Tepley, N., Nagel-Leiby, S., Moran, J.E., Simkins, R.T., and Welch, K.M.A. (1990) Magnetoencephalographic studies of migraine, Headache J. 30 (7), 428–434.

    Google Scholar 

  169. Barry, W.H., Harrison, D.C., Fairbank, W.M., Lehrman, K., Malmivuo, J.A.V., and Wikswo, Jr., J.P. (1977) Measurement of the human magnetic heart vector, Science 198, 1159–1162.

    Google Scholar 

  170. Wikswo, Jr., J.P. and Barach, J.P. (1982) Possible sources of new information in the magnetocardiogram, J. Theoretical Biol. 95, 721–729.

    Google Scholar 

  171. Roth, B.J. and Wikswo, Jr., J.P. (1986) Electrically-silent magnetic fields, Biophys. J. 50, 739–745.

    Google Scholar 

  172. Lant, J., Stroink, G., Ten Voorde, B., Horachek, M., and Montague, T.J. (1990) Complementary nature of electrocardiographic and magnetocardiographic data in patients with ischemic heart disease, J. Electrocardiology 23, 315–322.

    Google Scholar 

  173. Stroink, G., Lant, J., Elliot, P., and Gardner, M. (1992) Magnetic field and body surface potential mapping of patients with ventricular tachycardia, in M. Hoke, S.N. Erne, Y.C. Okada, and G.-L. Romani (eds.), Biomagnetism: Clinical Aspects, Elsevier, Amsterdam, pp. 471–475.

    Google Scholar 

  174. Malmivuo, J. and Plonsey, R. (1994) Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York.

    Google Scholar 

  175. Stroink, G., Moshage, W., and Achenbach, S. (1998) Cardiomagnetism, in W. Andrä and H. Nowak (eds.), Magnetism in Medicine: A handbook, Wiley-VCH, New York, pp. 163–189.

    Google Scholar 

  176. Stroink, G. (1999) New developments in magnetocardiology, Proc. 11th Inter. Conf. on Biomagnetism, Sendai, Japan, pp. 982–985.

    Google Scholar 

  177. Gornick, C.C., Adler, S.W., Pederson, B., Hauck, J., Budd, J., and Schweitzer, J. (1999) Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium, Circulation 99 (6), 829–835.

    Google Scholar 

  178. Schilling, R.J., Peters, N.S., and Wyn Davies, D. (1998) Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter, Circulation 98 (9), 887–898.

    Google Scholar 

  179. Van Leeuwen, P., Hailer, B., and Wehr, M. (1996) Spatial distribution of QT intervals: An alternative approach to QT dispersion, Pace 19(1) Part II, 18941899.

    Google Scholar 

  180. Brockmeier, K., Schmitz, L., Chavez, J.J.B., Burghoff, M., Koch, H., Zimmerman, R., and Trahms, L. (1997) Magnetocardiography and 32-lead potential mapping: Repolarization in normal subjects during pharmacologically induced stress, J. Cardiovasc. Electrophysiol. 8, 615–626.

    Google Scholar 

  181. Moshage, W. and Achenbach, S. (1997) Clinically significant differences between ECG and MCG, Biomedizinische Technik 42 (1), 25–28.

    Google Scholar 

  182. Hailer, B., Van Leeuwen, Lange, S., and Wehr, M. (1997) Magnetocardiography in risk stratification after myocardial infarction using spatial dispersion of the QT interval, Biomedizinische Technik 42 (1), 136–139.

    Google Scholar 

  183. Van Leeuwen, P., Hailer, B., and Wehr, M. (1997) Changes in current dipole parameters in patients with coronary artery disease with and without myocardial infarction, Biomedizinische Technik 42 (1), 132–135.

    Google Scholar 

  184. Van Leeuwen, Hailer, B., Donker, D., Lange, S., and Wehr, M. (1998) Noninvasive diagnosis of coronary artery disease at rest on the basis of multichannel magneto-cardiography, Pace 21 Part II, 908 (Abstract).

    Google Scholar 

  185. Hailer, B., Van Leeuwen, P., Pilath, M., Lange, S., Grönemeyer, Wehr, M., and Anstalt, A.K. (1998) Changes in the spatial dispersion of QT interval in patients with coronary artery disease, Pace 21 Part II, 908 (Abstract).

    Google Scholar 

  186. Gessner, Ch., Endt, P., Burghoff, M., and Trahms, L. (1998) Vortex currents detected by stress MCG and fragmentation of ECG/MCG in VT patients, Proc. 43rd Seminar on High-Resolution Electrocardiography and Magnetocardiography, Warsaw, Poland.

    Google Scholar 

  187. Hailer, B., Van Leeuwen, P., Lange, S., Grönemeyer, and Wehr, M. (1998) Spatial dispersion of the magnetocardiographically determined QT interval and its components in the identification of patients at risk for arrhythmia after myocardial infarction, Annals Noninvas. Electrocardiol. 3 (4), 311–318.

    Google Scholar 

  188. Endt, P Hahlbohm, H.-D., Kreiseler, D., Oeff, M., Steinhoff, U., and Trahms, L. (1998) Fragmentation of the bandpass filtered QRS-complex of patients prone to malignant arrhythmia, Med. Biol. Eng. Comput. 36 723–728.

    Google Scholar 

  189. Drake, W.B., Bradshaw, L.A., Fish, F.A., Mellen, B.G., and Wikswo, Jr., J.P. (1998) Magnetocardiographic assessment of developmental changes in fetal cardiac intervals, Circulation 98 (17), I - 835 (Abstract).

    Google Scholar 

  190. Drake, W.B., Bradshaw, L.A., Mellen, B.G., Fish, F.A., and Wikswo, Jr.,.J.P. Evaluation of fetal intracardiac intervals using vector magnetocardiography, in prepara-tion.

    Google Scholar 

  191. Lowery, C., Robinson, S., Eswaran, H., Vrba, J., Haid, V., and Cheung, T. (1999) Detection of the transient and steady-state auditory evoked responses in the human fetus, Proc. 11th Inter. Conf. on Biomagnetism, Sendai, Japan, pp. 963–966.

    Google Scholar 

  192. Staton, D.J., Friedman, R.N., and Wikswo, Jr., J.P. (1993) High resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue, IEEE Trans. Applied Supercond. 3 (1), 1934–1936.

    Google Scholar 

  193. Bradshaw, L.A., Ladipo, J.K., Haupt, C.D., Seidel, S.A., van Leeuwen, P., Wikswo, Jr., J.P., and Richards, W.O. (1998) Noninvasive measurement of gastric propagation using a multichannel SQUID magnetometer, Gastroenterology 114 (4 Part 2), G3003 (Abstract).

    Google Scholar 

  194. Richards, W.O., Bradshaw, L.A., Staton, D.J., Garrard, C.L., Liu, F., Buchanan, S., and Wikswo, Jr., J.P. (1996) Magnetoenterography (MENG): Noninvasive measurement of bioelectric activity in human small intestine, Digestive Diseases and Sciences 41 (12), 2293–2301.

    Google Scholar 

  195. Richards, W.O., Staton, D.J., Golzarian, J., Friedman, R.N., and Wikswo, Jr., J.P. (1995) Non-invasive SQUID magnetometer measurement of human gastric and small bowel electrical activity, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Proc. 9th Inter. Conf. on Biomagnetism, Vienna, pp. 743–747.

    Google Scholar 

  196. Richards, W.O., Garrard, C.L., Allos, S.H., Bradshaw, L.A., Staton, D.J., and Wikswo, Jr., J.P. (1995) Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer, Annals of Surgery 221 (6), 696–705.

    Google Scholar 

  197. Allos, S.H., Staton, D.J., Bradshaw, L.A., Halter, S., Wikswo, Jr., J.P., and Richards, W.O. (1997) Superconducting quantum interference device magnetometer for diagnosis of ischemia caused by mesenteric venous thrombosis, World J. Surg. 21, 173–178.

    Google Scholar 

  198. Bradshaw, L.A., Allos, S.H., Wikswo, Jr., J.P., and Richards, W.O. (1997) Correlation and comparison of magnetic and electric detection of small intestinal electrical activity, Am. J. Physiol. 272, G1159 - G1167.

    Google Scholar 

  199. Bradshaw, L.A., Ladipo, J.K., Staton, D.J., Wikswo, Jr., J.P., and Richards, W.O. (1999) The human vector magnetogastrogram and magnetoenterogram, IEEE Trans. Biomed. Eng. 46 (8), 959–970.

    Google Scholar 

  200. Weitschies, W., Kötitz, R., Cordini, D., and Trahms, L. (1997) High-resolution monitoring of the gastrointestinal transit of a magnetically marked capsule, J. Pharmaceutical Sci. 86 (11), 1218–1222.

    Google Scholar 

  201. Farrell, D.E., Allen, C.J., Arendt, P.N., Foltyn, S.R., Paulson, D.N., Fagaly, R.L., Brittenham, G.M. (1999) High-Tc SQUID susceptometry, Bull. Am. Phys. Soc. 444 (1/II), 1553.

    Google Scholar 

  202. Barth, D.S., Sutherling, W., and Beatty, J. (1984) Fast and slow magnetic phenomena in focal epileptic seizures, Science 226, 855–857.

    Google Scholar 

  203. Okada, Y.C., Wu, J., and Kyuhou, S.-I. (1997) Genesis of MEG signals in a mammalian CNS structure, Electroenceph. clin. Neurophysiol. 103, 474–485.

    Google Scholar 

  204. Wikswo, Jr., J.P., Friedman, R.N., Kilroy, A.W., van Egeraat, J.M., and Buchanan, D.S. (1990) Preliminary measurements with MicroSQUID, in S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani (eds.), Advances in Biomagnetism, Plenum Press, New York, pp. 681–684.

    Google Scholar 

  205. Thomas, I.M., Freake, S.M., Swithenby, S.J., and Wikswo, Jr., J.P. (1993) A distributed quasi-static ionic current source in the 3–4 day old chicken embryo, Phys. Med. Biol. 38, 1311–1328.

    Google Scholar 

  206. Thomas, I.M. and Friedman, R.N. (1995) Study of macrophage activity in rat liver using intravenous superparamagnetic tracers, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Proc. 9th Inter. Conf. on Biomagnetism, Vienna, pp. 809–813.

    Google Scholar 

  207. Goranson, U.G. and Miller, M. (1991) Aging jet transport structural evaluation programs, in S.N. Atluri, S.G. Sampath, and P. Tong (eds.), Structural Integrity of Aging Airplanes, Springer-Verlag, Berlin, pp. 131–140.

    Google Scholar 

  208. Bobo, S.N. (1990) The aging aircraft fleet: A challenge for nondestructive inspection, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 9B, pp. 2097–2109.

    Google Scholar 

  209. Ma, Y.P. and Wikswo, Jr., J.P. (1998) SQUID magnetometers for depth-selective, oriented eddy current imaging, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, vol. 17A, pp. 1067–1074.

    Google Scholar 

  210. Ma, Y.P., Ewing, A.P., and Wikswo, Jr., J.P. SQUID eddy current measurements using a sheet inducer, in preparation.

    Google Scholar 

  211. Ma, Y.P. and Wikswo, Jr., J.P. (1995) Techniques for depth-selective, low-frequency eddy current analysis for SQUID-based non-destructive testing, J. Nondestr. Eval. 14 (3), 149–167.

    Google Scholar 

  212. Ma, Y.P. and Wikswo, Jr., J.P. (1996) Depth-selective SQUID eddy current techniques for second layer flaw detection, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 15A, pp. 401–408.

    Google Scholar 

  213. Hall Barbosa, C., Bruno, A.C., Vellasco, M., Pacheco, M., Wikswo, Jr., J.P., Ewing, A.P., and Camerini, C.S. (in press) Automation of SQUID nondestructive evaluation of steel plates by neural networks, IEEE Trans. Applied Supercond.

    Google Scholar 

  214. Cochran, Sandy, University of Strathclyde, Glasgow, Scotland, personal communication.

    Google Scholar 

  215. Cochran, A., Donaldson, G.B., Morgan, L.N.C., Bowman, R.M., and Kirk, K.J. (1993) SQUIDs for NDT: The technology and its capabilities, British J. NDT 35, 173–182.

    Google Scholar 

  216. Otaka, M., Enomoto, K., Hayashi, M., Sakata, S., and Shimizu, S. (1994) Detection of fatigue damage in stainless steel using a SQUID sensor, in J.C. Spanner, Jr. (ed.), The American Society Mechanical Engineers, PVP-vol. 276, book no. G00844: Determining Material Characterization, pp. 113–117.

    Google Scholar 

  217. Sawade, G., Krause, 11.-J., Gampe, U. (1997) Non destructive examination of prestressed tendons by the magnetic stray field method, in M.T. Forde (ed.), Proceedings of the 7th International Conference on Structural Faults and Repair–97, Engineering Technic Press, Edinburgh, vol. I, pp. 401–406.

    Google Scholar 

  218. Bellingham, J.G., MacVicar, M.L.A., Nisenoff, M., and Searson, P.C. (1986) Detection of magnetic fields generated by electrochemical corrosion, J. Electrochem. Soc. 133, 1753–1754.

    Google Scholar 

  219. Bellingham, J.G., MacVicar, M.L.A., and Nisenoff, M. (1987) SQUID technology applied to the study of electrochemical corrosion, IEEE Trans. Mag. 23(2), 477479.

    Google Scholar 

  220. Jette, B.D. and MacVicar, M.L.A. (1991) SQUID magnetometry applied as a noninvasive electroanalytic chemical technique, IEEE Trans. Mag. 27, 3025–3028.

    Google Scholar 

  221. Misra, M., Lordi, S., and MacVicar, M.L.A. (1991) Applications of SQUID magnetometry to electrochemical systems, IEEE Trans. Mag. 27, 3245–3248.

    Google Scholar 

  222. Hibbs, A.D., Sager, R.E., Cox, D.W., Aukerman, T.H., Sage, T.A., and Landis, R.S. (1992) A high-resolution magnetic imaging system based on a SQUID magnetometer, Rev. Sci. Instrum. 63 (7), 3652–3658.

    Google Scholar 

  223. Hibbs, A.D. (1992) Measurement of electrochemical corrosion currents using a multichannel superconducting quantum interference device magnetometer, J. Electrochem. Soc. 139 (9), 2447–2457.

    Google Scholar 

  224. Richter, H. and Knecht, A. (1997) HTS SQUID magnetometer–feasibility study on non-destructive detection of corrosion currents in aluminum aircraft parts, Materialpruefung 39, 390–396.

    Google Scholar 

  225. Li, D., Ma, Y.P., Flanagan, W.F., Lichter, B.D., and Wikswo, Jr., J.P. (1994) The use of superconducting magnetometry to detect corrosion in aircraft alloys, Proceedings of the Tri-Service Conference on Corrosion, Orlando, FL, pp. 335–346.

    Google Scholar 

  226. Li, D., Ma, Y.P., Flanagan, W.F., Lichter, B.D., and Wikswo, Jr., J.P. (1995) Detecting in-situ active corrosion by a SQUID magnetometer J. Minerals, Metals and Materials 47 36–39.

    Google Scholar 

  227. Li, D., Ma, Y.P., Flanagan, W.F., Lichter, B.D., and Wikswo, Jr., J.P. (1996) Application of superconducting magnetometry in the study of aircraft aluminum alloy corrosion, Corrosion 52, 219–231.

    Google Scholar 

  228. Li, D., Ma, Y.P., Flanagan, W.F., Lichter, B.D., and Wikswo, Jr., J.P. (1997) Detection of hidden corrosion of aircraft aluminum alloys by magnetometry using a superconducting quantum interference device, Corrosion 53, 93–98.

    Google Scholar 

  229. Abedi, A. and Wikswo, Jr., J.P. Investigating and modeling of the sources of magnetic field associated with uniform corrosion of 7075-T6 aircraft aluminum alloy, in preparation.

    Google Scholar 

  230. Skennerton, G., Abedi, A., and Wikswo, Jr., J.P. Magnetic measurements of the response of corrosion activity within aircraft lap joints to accelerated corrosion testing, in preparation.

    Google Scholar 

  231. Fitzpatrick, G.L., Thome, D.K., Skaugset, R.L., and Shih, E.Y.C. (1993) The present status of magneto-optic eddy current imaging technology, in D.O. Thompson and D.E. Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 12A, pp. 617–624.

    Google Scholar 

  232. Staton, D.J., Rousakov, S.V., and Wikswo, Jr., J.P. (1996) Conductivity imaging in plates using current injection tomography, in D.O. Thompson and D.E.Chimenti (eds.), Review of Progress in QNDE, Plenum Press, New York, vol. 15A, pp. 845–851.

    Google Scholar 

  233. Wikswo, Jr., J.P., Gevins, A., and Williamson, S.J. (1993) The future of the EEG and MEG, Electroenceph. clin. Neurophysiol. 87, 1–9.

    Google Scholar 

  234. Tucker, D.M. (1993) Spatial sampling of head electrical fields: The geodesic sensor net, Electroenceph. clin. Neurophysiol. 87, 154–163.

    Google Scholar 

  235. Gevins, A.S., DuRosseau, D., and Libove, J. (1991) Electrode system for brain wave detection, U.S. Patent 5, 038–782.

    Google Scholar 

  236. Gevins, A.S., Le, J., Brickett, P., Reutter, B., and Desmond, J. (1991) Seeing through the skull: Advanced EEGs use MRIs to accurately measure cortical activity from the scalp, Brain Topog. 4(2), 125–131.

    Google Scholar 

  237. Gevins, A., Smith, M.E., Le, J., Leong, H., Bennett, J., Martin, N., McEvoy, L., Du, R., Whitfield, S. (1996) High resolution evoked potential imaging of the cortical dynamics of human working memory, Electroenceph. clin. Neurophysiol. 98, 327348.

    Google Scholar 

  238. Murgical Treatment of the Epilepsies, J. Engel, Jr. (ed.), Raven Press, New York, p. 26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wikswo, J.P. (2000). Applications of SQUID Magnetometers to Biomagnetism and Nondestructive Evaluation. In: Weinstock, H. (eds) Applications of Superconductivity. NATO ASI Series, vol 365. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0752-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0752-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5377-0

  • Online ISBN: 978-94-017-0752-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics