Skip to main content

Cryogenic Systems for Superconducting Devices

  • Chapter
Applications of Superconductivity

Part of the book series: NATO ASI Series ((NSSE,volume 365))

Abstract

It may happen, sometime, that the reader spends his or her well deserved holidays in the beautiful country of Greece and, sitting on a typically unstable chair in one of the nice taverns, one may ask for “kryo nero”. It may take a while, but you will get a nice jug filled to the top with icy cold water. Indeed, “cryo” means “cold”, and cooling was already known as a means to improve the quality of life in the early times The Egyptians put wet cloths over their foods, and placed them in the sun, so that the heat associated with the evaporation of the water cooled their food and drinks The Romans cooled their foods with ice blocks that were taken from Alpine regions and were stored underground in vaults insulated with straw. Our forefathers in Europe cut ice blocks out of rivers or shipped ice from Norway or Canada. In special ice factories rods of ice were made to be used for instance in butcheries and breweries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, R. (1966) Cryogenic Systems, McGraw-Hill Book Company, New York.

    Google Scholar 

  2. Kurti, N. (1971) Introduction, in G.G. Haselden, Cryogenic Fundamentals, Academic Press, London.

    Google Scholar 

  3. Mendelssohn, K. (1977) The Quest for Absolute Zero, Taylor und Francis LTD, London.

    Google Scholar 

  4. Walker, G. (1983) Cryocoolers, part 1: Fundamentals, Plenum Press, New York.

    Google Scholar 

  5. Scurlock, R.G. (1992) History and Origins of Cryogenics, Clarendon Press, Oxford.

    Google Scholar 

  6. Collins, S.C. and Canaday, R.L. (1958) Expansion Machines for Low Temperature Processes, Oxford University Press, Oxford.

    Google Scholar 

  7. Onnes, H.K. (1911), Leiden Comm. 120b, 122b, 124c.

    Google Scholar 

  8. Radebaugh, R. (1995) Recent developments in cryocoolers, in Proc. 19 ffi International Congress of Refrigeration, Den Haag, pp. 973–989.

    Google Scholar 

  9. Hands, B.A. (1986) Cryogenic Engineering, Academic Press, London.

    Google Scholar 

  10. Kemey, P.J. and Nisenoff, M. (1995) Workshop on Cryogenic Packaging of High Temperature Superconducting (HTS) Electronic Devices, Conference report in Cryogenics 35, 405–406.

    Google Scholar 

  11. Callen, H.B. (1985) Thermodynamics and an Introduction to Thermostatistics, John Wiley und Sons, New York.

    MATH  Google Scholar 

  12. Finn, C.P.B. (1986) Thermal Physics, Routledge, London.

    Google Scholar 

  13. Walker, G. (1989) Miniature Refrigerators for Cryogenic Sensors and Cold Electronics, Clarendon Press, Oxford.

    Google Scholar 

  14. Sheahen, T.P. (1994) Introduction to high-temperature superconductivity, Plenum Press, New York.

    Google Scholar 

  15. Strobridge, T.R. (1974) Cryogenic Refrigerators - An updated Survey, National Bureau of Standards Technical Note 655 ( Supt. Documents, U.S. Govt. Printing Off. ).

    Google Scholar 

  16. Nisenoff, M. (1997) System aspects (interfacing and packaging), TYRAS-workshop, University of Twente, Enschede, June 27–29.

    Google Scholar 

  17. Nisenoff, M. (1997), personal communication.

    Google Scholar 

  18. Low Power Cryocoolers, 161. WE-Hereaeus-Seminar, Bad Honnef, Germany, 3–5 June 1996.

    Google Scholar 

  19. Rogalla, H. (1994) Superconducting electronics, Cryogenics 34, 25–30.

    Google Scholar 

  20. Fukushima, K., Okada, M., Tanaka, K., Kitaguchi H. et al. (1996) Fabrication and transport properties of a solenoidal coil wound with Bi2Sr2CaCu2O,1Ag multifilamentary tapes for high magnetic field generation, Physica C 268, 334–338.

    Google Scholar 

  21. Ter Brake, H.J.M., Aamink, W.A.M., Van den Bosch, P.J., Hilgenkamp, J.W.M., Flokstra, J. and Rogalla, H. (1997) Temperature dependence of the effective sensing area of high-To dc SQUIDs, Superconductor Science and Technology 10, 512–515.

    Google Scholar 

  22. Van den Bosch, P.J. (1996) Cryocooler-operated high-T a SQUID system for magnetocardiography in an unshielded environment, Ph.D. thesis University of Twente, Enschede.

    Google Scholar 

  23. Klein, N. (1996) HTS-shielded dielectric resonators for oscillators and filters, Low Power Cryocoolers, Bad Honnef, Germany 3–5 June 1996.

    Google Scholar 

  24. Private communication May 1997 Fokker Space Leiden, The Netherlands.

    Google Scholar 

  25. Braginski, A.I. (1996) Fabrication of high-temperature SQUID magnetometers, in H. Weinstock (ed.), SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic Publishers, Dordrecht, pp. 235–288.

    Google Scholar 

  26. Clarke, J. (this volume) Low-and high-T. SQUIDs and some applications.

    Google Scholar 

  27. Grant, P. (1997) Superconductivity and electric power: promises, promises…. past, present and future, IEEE Transactions on Applied Superconductivity 7, 112.

    Google Scholar 

  28. Ackermann, R.A. (1993) Closed-cycle refrigeration for SC applications, Superconductor Industry, Fall 1993, 15–24.

    Google Scholar 

  29. Gao, L., Huang, Z.J., Meng, R.L., Lin, F. et al. (1993) Study of the superconductivity in the Hg-Ba-Ca-Cu-O system, Physica C 213, 261–265.

    Google Scholar 

  30. Schilling, A., Cantoni, M., Guo, J.D. and Ott H.R. (1993) Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system, Nature 363, 56–58.

    Google Scholar 

  31. Walker, G. (1983) Cryocoolers, part 2: Applications, Plenum Press, New York.

    Google Scholar 

  32. Lounasmaa, O.V. (1974) Experimental Principles and Methods below I K, Academic Press, New York.

    Google Scholar 

  33. Walker, G. and Bingham E.R. (1994) Low-Capacity Cryogenic Refrigeration, Clarendon Press, Oxford.

    Google Scholar 

  34. Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195–1501, USA.

    Google Scholar 

  35. Praxair, Indugas Nederland B.V. Postbus 88, 3130 AB Vlaardingen, The Netherlands.

    Google Scholar 

  36. Reed, R.P. and Clark, A.F. (1983) Materials at Low Temperatures,American Society of Metals.

    Google Scholar 

  37. Cryodata Inc., P.O.Box 558, Niwot, Colorado, USA.

    Google Scholar 

  38. Ter Brake, H.J.M., Den Breeijen, P.M. and Flokstra, J. (1986) A first step towards computer aided cryostat design, in G. Klipping and I. Klipping (eds.), Proceedings 11`h International Cryogenic Engineering Conference, Butterworth, UK, pp. 549–555.

    Google Scholar 

  39. Superinsulation NRC-2 Oxford Instruments Ltd, Eynsham, Oxford OX8 1TL, UK.

    Google Scholar 

  40. Ter Brake, H.J.M. and Flokstra, J. (1988) Computer aided cryostat design: recent developments R.G. Scurlock and C.A. Bailey (eds.), Proceedings 1261 International Cryogenic Engineering Conference, Butterworth, UK, pp. 88–92.

    Google Scholar 

  41. Davies F. (this volume) MRI magnets.

    Google Scholar 

  42. Nenonen, J., Katila, T. and Montonen, J. (1989) Thermal noise of a biomagnetic measurement dewar, in Advances in Biomagnetism, Plenum Press, New York, 729–732.

    Google Scholar 

  43. Kasai, N., Sasaki, K., Kiryu, S. and Suzuki, Y. (1993) Thermal magnetic noise of dewars for biomagnetic measurements, Cryogenics 33, 175–179.

    Google Scholar 

  44. Orientation independent cryostat, type ILK-4, Institut für Luft-und Kältetechnik, BertoltBrecht-Alee 20, 01309 Dresden, Germany.

    Google Scholar 

  45. Holland, H.J., Burger, J.F., Boersma, N., Ter Brake, H.J.M. and Rogalla, H. (1998), Miniature 10–150 mW Linde Hampson cooler with glass-tube heat exchanger operating with nitrogen, Cryogenics 38, 407–410.

    Google Scholar 

  46. Little, W.A. (1984) Microminiature refrigeration, Rev. Sci. Instrum. 55, 661–680.

    Google Scholar 

  47. Garvey, S., Logan, S., Rowe, R. and Little, W.A. (1983) Performance characteristics of a low-flow rate 25 mW, LN2 Joule-Thomson refrigerator fabricated by photolithographic means, Appl. Phys. Leu. 42, 1048–1050.

    Google Scholar 

  48. MMR Technologies, Inc., 1400 North Shoreline Boulevard Suite A-5, Mountain View, CA 4043–1346, USA.

    Google Scholar 

  49. Onnes, H.K. (1908) Commun. Phys. Lab. Univ. Leiden,no. 108.

    Google Scholar 

  50. Köhler, J.W.L. (1965) The Stirling refrigeration cycle, Scientific American 212, 119–127.

    Google Scholar 

  51. Inframetrics, Inc. 16 Esquire Road, No. Billerica, MA 01862–2598, USA.

    Google Scholar 

  52. McMahon, H.0 (1960) Recent developments in gas cryogenics, Cryogenics 1, 65–70.

    Google Scholar 

  53. Gifford, W.E. and Mc Mahon, H.O. (1959) A low temperature heat pump, in Proceedings. 10`h International Congress of Refrigeration. Vol. 1 (Copenhagen 1959 ).

    Google Scholar 

  54. Gifford, W.E. (1966) The Gifford-McMahon cycle, in K.D. Timmerhaus (ed.), Advances in Cryogenic Engineering 11, Plenum Press, New York, pp. 152–159.

    Google Scholar 

  55. Radebaugh, R. (1997) Advances in cryocoolers, in T. Haruyama, T. Mitsui and K Yamafuji (eds.), Proceedings 1e International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 33–44.

    Google Scholar 

  56. Fujimoto, S., Taneya, S., Kurihara, T., Miura, K., Tomioka, K. et al. (1997) Development of a 4 K GM/JT refrigerator for maglev vehicles, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.) Proceedings 16 m International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 331–334.

    Google Scholar 

  57. Kariyama, T., Hakamada, R., Nakagome, H., Tokai, Y. et al. (1990) High efficient two-stage GM refrigerator with magnetic material in the liquid helium temperature region, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1261.

    Google Scholar 

  58. Nagao, M., Inaguchi, T., Yoshimura, H., Yamada, T. and Iwamoto, M. (1990) Helium liquefaction by a Gifford-McMahon cycle cryocooler, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1251.

    Google Scholar 

  59. Satoh, T., Onishi, A., Li, R., Asami, H. and Kanazawa, Y. (1996) Development of 1.5 W 4K G-M cryocooler with magnetic regenerator material, in P. Kittel (ed.), Advances in Cryogenic Engineering 41, Plenum Press, New York, pp. 1631–1637.

    Google Scholar 

  60. Koyanagi, K., Urata, M., Ohtani, Y., Kuriyama, T. et al. (1996) A cryocooler-cooled 10 T superconducting magnet with 100 mm room temperature bore, IEEE Transactions on Magnetics 32, 2558–2561.

    Google Scholar 

  61. Crunkleton, J.A. (1987) A new configuration for a liquid helium temperature cryocooler, M. I. T., Ph.D. thesis.

    Google Scholar 

  62. Crunldeton, J.A. (1993) A new configuration for small-capacity liquid-helium-temperature cryocoolers, in Proceedings 7` h International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 187–196.

    Google Scholar 

  63. Sullivan, D.B. and Zimmerman, J.E. (1979) Very-low-power Stirling cryocoolers using plastic and composite materials, in Proceedings 15th International Congress of Refrigeration (Venice), pp. 195–199.

    Google Scholar 

  64. Radebaugh, R. (1979) Analysis of regenerator inefficiency for Stirling-cycle refrigerators with plastic displacers, in Proceedings 15th International Congress of Refrigeration (Venice), pp. 189–194.

    Google Scholar 

  65. Gallagher, G.R. and Crunkleton, J.A. (1994) Thermodynamic analysis of the Boreas cryocooler, in P. Kittel (ed.), Advances in Cryogenic Engineering 39, Plenum Press, New York, pp. 1543–1551.

    Google Scholar 

  66. Boreas Cryocoolers, 35 Dunham Rd., Billerica, MA 01821, USA.

    Google Scholar 

  67. Gifford, W.E. and Longsworth, R.C. (1963) Pulse-tube refrigeration, ASME paper No. 63WA-290 presented at Winter Annual Meeting of the American Society of Mechanical Engineers, Philadelphia, Pennsylvania (Nov. 17–22, 1963 ).

    Google Scholar 

  68. Radebaugh, R., Zimmerman, J., Smith, D.R. and Louie, B. (1986) A comparison of three types of pulse tube refrigerators: new methods for reaching 60 K, in R.W. Fast (ed.), Advances in Cryogenic Engineering 31, Plenum Press, New York, pp. 779–789.

    Google Scholar 

  69. Longsworth R.C. (1967) An experimental investigation of pulse tube refrigeration heat pumping rates, in K.D. Timmerhaus (ed.), Advances in Cryogenic Engineering 12, Plenum Press, New York, pp. 608.

    Google Scholar 

  70. Mikulin, E.I., Tarasov, A.A. and Shkrebyonock (1984) Low-temperature expansion pulse tubes, Advances in Cryogenic Engineering 29, Plenum Press, New York, pp. 629.

    Google Scholar 

  71. Kittel, P. (1992) Ideal orifice pulse tube refrigerator performance, Cryogenics 32, 843–844.

    Google Scholar 

  72. Zhu, S., Wu, P. and Chen, Z (1990) Double inlet pulse tube refrigerators: an important improvement, Cryogenics 30, pp. 514.

    Google Scholar 

  73. Chan, C.K., Jaco, C.B., Raab, J., Tward, E. and Waterman, M. (1993) Miniature pulse tube cooler, in Proceedings 7 m International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 113–124.

    Google Scholar 

  74. Matsubara, Y. and Gao, J.L. (1994) Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K, Cryogenics 34, 259–262.

    Google Scholar 

  75. Wang, C., Thummes, G. and Heiden, C. (1997) A two-stage pulse tube cooler operating below 4 K, Cryogenics 37, 159–164.

    Google Scholar 

  76. A. Ravex and Y. Matsubara, private communication during 9`11 Int. Cryocooler Conf. Waterville Valley, New Hampshire, June 25–27 1996.

    Google Scholar 

  77. Storch, P.J., Radebaugh, R. and Zimmerman, J.E. (1990) Analytical model for the refrigeration power of the orifice pulse tube refrigerator, NIST report, Technical Note 1343.

    Google Scholar 

  78. David, M., Marechal, J.-C., Simon, Y. and Guilpin, C. (1993) Theory of ideal orifice pulse tube refrigerator, Cryogenics 33, 154–162.

    Google Scholar 

  79. Hofmann, A. and Wild, S. (1995) A model for analyzing ideal double inlet pulse tube refrigerators, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 371–381.

    Google Scholar 

  80. Zhu, S.W. and Chen, Z.Q. (1994) Isothermal model of pulse tube refrigerator, Cryogenics 34, 591–595.

    Google Scholar 

  81. Chan, C.K., Jaco, C. and Nguyen, T. (1997) Advanced pulse tube cold head development, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 203–212.

    Google Scholar 

  82. Kirkconnell, C.S. and Colwell, G.T. (1997) A one dimensional model of high-frequency pulse tube heat and mass flows, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 335–344.

    Google Scholar 

  83. Zhu, S.W., Zhou, S.L., Yoshimura, N. and Matsubara, Y. (1997) Phase shift effect of the long neck tube for the pulse tube refrigerator, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 269–278.

    Google Scholar 

  84. De Waele, A.T.A.M., Steijaert, P.P. and Gijzen, J. (1997) Thermodynamical aspects of pulse tubes, Cryogenics 37, 313–324.

    Google Scholar 

  85. Lee, J.M., Kittel, P., Timmerhaus, K.D. and Radebaugh, R. (1995), Steady secondary momentum and enthalpy streaming in the pulse tube refrigerator, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 359–369.

    Google Scholar 

  86. Lee, J.M., Kittel, P., Timmerhaus, K.D. and Radebaugh, R. (1997) Higher order pulse tube modelling, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 345–353.

    Google Scholar 

  87. Thummes, G., Schreiber, M., Landgraf, R. and Heiden, C. (1997), Convective heat losses in pulse tube coolers: effect of pulse tube inclination, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 393–402.

    Google Scholar 

  88. Thummes, G., Landgraf, R., Muck, M., Klundt, K. and Heiden, C. (1997) Operation of a high-Tc SQUID gradiometer by use of a pulse tube refrigerator, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.) Proceedings 16` h International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 283–286.

    Google Scholar 

  89. Saez, S., Dolabdjian, C., Bloyet, D., David, M. and Maréchal (1997) Progress towards a hand portable pulse tube refrigerator for high TT SQUID operation, in H. Koch and S. Knappe (eds.), Extended abstracts of 6`h Internatonal superconductive Electronics Conference, Berlin, 25–28 June 1997, PTB Braunschweig, pp. 432–434.

    Google Scholar 

  90. Nast, T., Champagne, P. and Kotsubo, V. (1998) Development of a low-cost unlimited-life pulse-tube cryocooler for commercial applications, presented at Cryogenic Engineering Conference 1997, to be published in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York.

    Google Scholar 

  91. Jones, B.G. (1995) Development for space use of BAe’s improved single-stage Stirling cycle cooler for applications in the range 50–80 K, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 1–11.

    Google Scholar 

  92. Radebaugh, R. (1990) A review of pulse tube refrigeration, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1191–1205.

    Google Scholar 

  93. Davey, G. (1990) Review of the Oxford cryocooler, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1423–1430.

    Google Scholar 

  94. Longsworth, R.C., Boiarski, M.J. and Klusmier, L.A. (1995) 80 K Closed-cycle throttle refrigerator, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 537–541.

    Google Scholar 

  95. Missimer, D.J. (1994) Auto-Refrigerating Cascade (ARC) Systems - an overview, Tenth Intersociety Cryogenic Symposium, AIChE Spring National Meeting, March 1994.

    Google Scholar 

  96. Alfeev, V.N., Brodyanski, V.M., Yogadin, V.M., Nikolsky, V.A. and Ivantsov, A.V. (1973) Refrigerant for a cryogenic throttling unit, UK patent 1,336, 892.

    Google Scholar 

  97. Marquardt, E., Radebaugh, R. and Dobak, J. (1998) A cryogenic catheter for treating heart arrhythmia, presented at Cryogenic Engineering Conference 1997, to be published in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York.

    Google Scholar 

  98. APD Cryogenics Inc., 450 Old Niskayuna Road, P.O.Box 461, Latham NY, USA.

    Google Scholar 

  99. Little, W.A. (1990) Advances in Joule-Thomson cooling, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, pp. 1305–1314.

    Google Scholar 

  100. Kleemenko, A.P. (1960) One flow cascade cycle (in scheme of natural gas liquefaction and separation, in Proceedings 10 m International Congress of Refrigeration, Copenhagen 1959, Pergamon Pres, pp. 34–39.

    Google Scholar 

  101. Little, W.A. and Sapozhnikov, I. (1994) Development of a low cost cryogenic refrigeration system for cooling of cryoelectronics, in P. Kittel (ed.), Advances in Cryogenic Engineering 39, Plenum Press, New York, pp. 1467–1474.

    Google Scholar 

  102. Little, W.A. and Sapozhnikov, I. (1997) Low cost cryocoolers for cryoelectronics, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 509–513.

    Google Scholar 

  103. Radebaugh R. (1983) Fundamentals of alternate cooling, in G. Walker, Cryocoolers part 2: Applications, Plenum Press, New York, pp. 129–175.

    Google Scholar 

  104. Brown, G.V. (1976) Magnetic pumping near room temperature, Journal of Applied Physics 47, 3673–3680.

    Google Scholar 

  105. Shull, R.D., McMichael, R.D., Ritter, J.J., Swartzendruber, L.J. and Bennett, L.H. (1993) Magnetic nanocomposites as magnetic refrigerants, in Proceedings 7 m International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 1133–114. 4.

    Google Scholar 

  106. Shao, Y.Z., Lai, J.K.L. and Shek, C.H. (1996) Preparation of nanocomposite working substances for room-temperature magnetic refrigeration, Journal of Magnetism and Magnetic Materials 163, 103–108.

    Google Scholar 

  107. Liu, X.Y., Barclay, J.A., Gopal, R.B., Földeàki, M. et al. (1996) Thermomagnetic properties of amorphous rare-earth alloys with Fe, Ni or Co, Journal of Applied Physics 79, 1630–1641.

    Google Scholar 

  108. Herbst, J.F., Fuerst, C.D. and McMichael, R.D. (1996) Structural, magnetic, and magnetocaloric properties of (Hf0.83Ta0.17)Fe2+ materials, Journal of Applied Physics 79, 5998–6000.

    Google Scholar 

  109. Zhang, X.X., Tejada, J., Xin, Y., Sun, G.F., Wong, K.W. and Bohigas, X. (1996) Magietocaloric effect in La0.67CaO,33MnO8 and La0,60Y0.07Ca0.33MnO8 bulk materials Applied Physics Letters 69, 3596–3598.

    Google Scholar 

  110. Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P. and Feng, D. (1997) Large magnetic entropy change in perovskite-type manganese oxides, Physics Review Letters 78, 1142–1145.

    Google Scholar 

  111. Pecharsky, V.K. and Gschneidner Jr., K.A. (1998) The giant magnetocaloric effect in Gd5(SixGel-04 materials for magnetic refrigeration, presented at Cryogenic Engineering Conference 1997, to be published in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York.

    Google Scholar 

  112. Goldsmid, H.J. (1964) Thermoelectric refrigeration, Plenum Press, New York.

    Google Scholar 

  113. Rowe, D.M. (ed.) (1995), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton.

    Google Scholar 

  114. Kolander, W.L., Morrison, B., Bierschenk, J., Fuhrer, J. and Kottak, T. (1993) Thermoelectric coolers for the TWS, SFW, WAM and SADARM programs and associated MANTECH program objectives, in Proceedings 7` 1 International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 332–348.

    Google Scholar 

  115. Benedict, B.A., Lester, J.E. and Lineberger, D.D. (1989) U.S. Patent #4,825,667, May 2, 1989.

    Google Scholar 

  116. Lyon Jr., H.B. and Bierschenk, J. (1995) The potential for improved cycle efficiency by combining thermoelectric coolers with vapor compression cycles in hybrid systems, Proc. l4` ß Int. Conf. on Thermoel., St. Petersburg.

    Google Scholar 

  117. Goldsmid, H.J., Gopinathan, K.K., Mathews, D.N., Tayor, K.N.R. and Baird, C.A. (1988) High-Ta superconductors as passive thermo-elements, Journal of Physics D: Applied Physics 21, 341–348.

    Google Scholar 

  118. Mosolov, A.B. and Sidorenko, N.A. (1992) Application of high-Ta superconducting materials in cryogenic Peltier coolers, Cryogenics 32 ICEC supplement, 36–39.

    Google Scholar 

  119. Donabedian, M. (1985) Cooling systems, in W.L. Wolfe and G.J. Zissis (eds.), The Infrared Handbook, Enviromental Research Institute of Michigan, chapter 15.

    Google Scholar 

  120. Rouillé, G. and Jewell, C. (1993) Cooling of high TT superconductors in space, ESA workshop on Space applications of high temperature superconductors 27–28 April 1993, ESA WPP-052.

    Google Scholar 

  121. Private communication, Bryan Jones, Matra Marconi Space, November 1997.

    Google Scholar 

  122. Lockheed Missiles und Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304–1191 USA.

    Google Scholar 

  123. Glaister, D.S., Bell, K.D., Bello, M. and Stoyanof, M. (1995) The development and verification of a cryogenic phase change thermal storage unit for spacecraft applications, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 927–940.

    Google Scholar 

  124. Khare N. and Chaudhari P. (1994) Operation of bicrystal junction high-Ta direct current-SQUID in a portable microcooler, Appl. Phys. Lett. 65, 2353–2355.

    Google Scholar 

  125. Ter Brake, H.J.M., Holland, H.J. and Rogalla, H. (1997), Stirling cooler magnetic interference measured by a high-Ta SQUID mounted on the cold tip, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 935–942.

    Google Scholar 

  126. Hohmann, R., Lucia, M.L., Soltner, H., Krause, H.-J. et al. (1997) Integration of HTS SQUIDs with portable cooling devices for the detection of materials defects in nondestructive evaluation, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 925–934.

    Google Scholar 

  127. Ter Brake, H.J.M. Van den Bosch, P.J. and Holland, H.J. (1994) Magnetic noise of small Stirling coolers, in P. Kittel (ed.), Advances in Cryogenic Engineering 39 Plenum Press, New York, pp. 1287–1295.

    Google Scholar 

  128. Vrba, J. (1996) SQUID gradiometers in real environments, in H. Weinstock (ed.), SQUID: Fundamentals, Fabrication and Applications, Kluwer Academic Publishers, Dordrecht, pp. 117–178.

    Google Scholar 

  129. Rijpma, A.P., Seppenwolde, Y., Ter Brake, H.J.M., Peters, M.J. and Rogalla, H. (1997) Application of SQUID magnetometers in fetal magnetocardiography, in H. Rogalla and D.H.A. Blank (eds.) Applied Superconductivity 1997, Institute of Physics Publishing, Bristol, pp. 771–774.

    Google Scholar 

  130. Bakker, C.J. and Heller, G. (1939) On the Brownian motion of electric resistances, Physica VI 3, 262–274.

    Google Scholar 

  131. Van Duuren, M.J. (1997) Advanced relaxation oscillation SQUIDs, Ph.D. thesis University of Twente, Enschede.

    Google Scholar 

  132. Longsworth, R.C. (1980) Serviceable refrigerator system for small superconducting devices, in J.E. Zimmerman, D.B. Sullivan and S.E. Mc Carthy (eds.), Refrigeration for cryogenic sensors and electronic systems, Proc. NBS Boulder, Oct. 6–7 1980, pp. 82–92.

    Google Scholar 

  133. Kaiser, G., Thürk, M. and Seidel, P. (1996) Closed cycle cryocoolers with a phase-change system for the cooling of high-Ta SQUIDs, in P. Kittel (ed.), Advances in Cryogenic Engineering 41, Plenum Press, New York, pp. 1247–1253.

    Google Scholar 

  134. Bugby, D.C., Bettini, R.G., Stouffer, C.J., Stoyanof, M. and Glaister, D.S. (1997) Development of a 60 K thermal storage unit, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 747–764.

    Google Scholar 

  135. Dunn, P.D. and Reay, D.A. (1982) Heat Pipes,Pergamon Press 3’1 ed., Oxford.

    Google Scholar 

  136. Prenger, F.C., Hill, D.D., Daney, D.E., Daugherty, M.A., Green, G.F., Chafe, J., Heiberger, M. and Langhorn, A. (1997) Heat pipes for enhanced cooldown of cryogenic systems, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 831–839.

    Google Scholar 

  137. Binneberg, A., Buschmann, H., Herzog, R., Neubert, J. and Sptirl (1997) Thermosiphon cooler: a low microphonic cooling system for HTC-devices; especially for SQUIDS, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.), Proceedings 1e International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 509–511.

    Google Scholar 

  138. Vincent, D.A. (1977) Closed-cycle refrigerator for a superconducting susceptometer, in Applications of closed-cycle cryocoolers to small superconducting devices Proc. NBS Boulder/USA, Oct 3–4 1977, pp. 131–133.

    Google Scholar 

  139. Rosenfeld, J.H., Wolf, D.A. and Buchko, M.T. (1995) Emerging technologies for cryocooler interfaces, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 743–753.

    Google Scholar 

  140. Cullimore, B., Kroliczek, E. and Ku, J. (1995) Cryogenic capillary pumped loops: a novel cryocooler integration technology, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 719–730.

    Google Scholar 

  141. Dunbar, N., Jacobs, R. and Supper, W. (1997) Design, development and testing of a miniature capillary pumped loop, in Proceedings of the Sixth European Symposium on `Space Environmental Control Systems’, Noordwijk 20–22 May 1997, ESA Publications Division, pp. 365–370.

    Google Scholar 

  142. Daugherty, M.A., Daney, D.E., Prenger, F.C., Hill, D.D., Williams, P.M. and Boenig, H.J. (1996) Assembly and testing of a composite heat pipe thermal intercept for HTS current leads, in P. Kittel (ed.), Advances in Cryogenic Engineering 41, Plenum Press, New York, pp. 579–585.

    Google Scholar 

  143. Van den Bosch, P.J., Holland, H.J., Ter Brake, H.J.M. and Rogalla, H. (1995) Closed-cycle gas flow sytem for cooling of high-Ta dc SQUID magnetometers, Cryogenics 35, 109–116.

    Google Scholar 

  144. Troell, J. and Heiden, C. (1997) Low noise gas flow cryosystem for cooling high-T, SQUID, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.), Proceedings 16` h International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 453–456.

    Google Scholar 

  145. Kotsubo, V. and Black, R.D. (1996) Apparatus for cooling NMR coils, U.S. patent 5,508, 613.

    Google Scholar 

  146. Van den Bosch, P.J., Ter Brake, H.J.M., Holland, H.J., De Boer, H.A., Verbeure, J.F.C. and Rogalla, H. (1997) Cryogenic design of a high-Ta SQUID-based heart scanner cooled by small Stirling cryocoolers, Cryogenics 37, 139–151.

    Google Scholar 

  147. Sata, K., Fujimoto, S., Fukui, N., Haraguchi, E., Kido, T., Nishiguchi, K. and Kang, Y.-M. (1997) A 61-channel SQUID system for MEG measurement cooled by a GM/JT cryocooler, IEEE Transactions on Applied Superconductivity 7, 2526–2529.

    Google Scholar 

  148. Sata, K., Fujimoto, S., Fukui, N., Haraguchi, E., Kido, T., Nishiguchi, K. and Kang, Y-M. (1997) Development of SQUID based systems cooled by GM/JT cryocoolers, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.), Proceedings 16`“ International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 1173–1176.

    Google Scholar 

  149. Wade, L.A. (1992) An overview of the development of sorption refrigeration, in R.W. Fast (ed.), Advances in Cryogenic Engineering 37, Plenum Press, New York, pp. 1095–1106.

    Google Scholar 

  150. Huinink, S.A.J., Burger, J.F., Holland, H.J., Van der Sar, E.G., et al. (1997) Experiments on a charcoal/nitrogen sorption compressor and model considerations, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 597–606.

    Google Scholar 

  151. Walker, G. and Bingham, E.R. (1990) Micro and nanno cryocoolers: speculation on future development, in Proceedings of the 6 th International Cryocooler Conference, Plymouth, Mass., October 1990, pp. 363–375.

    Google Scholar 

  152. Crete, D., Cabanel, R. and Friederich, A. (1995) Refroidisseur à gaz pulsé, European patent publication 0 672 873 Al.

    Google Scholar 

  153. Bowman, L., Berchowitz, D.M. and Urieli, I. (1994) Microminiature Stirling cycle cryocoolers and engines, US patent 5,457, 956.

    Google Scholar 

  154. Burger, J.F., Ter Brake, H.J.M., Elwenspoek, M. and Rogalla, H. (1997) Microcooling: study on the application of micromechanical techniques, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 687–696.

    Google Scholar 

  155. Burger, J.F., Holland, H.J., Ter Brake, H.J.M. and Rogalla, H. (1997) Development of a microminiature sorption cooler, in Proceedings of the Sixth European Symposium on ‘Space Environmental Control Systems’, Noordwijk 20–22 May 1997, ESA Publications Division, pp. 489–496.

    Google Scholar 

  156. Zimmerman, J.E. (1980) Cryogenics for SQUIDs, in H.D. Hahlbohm and H. Lübbig (eds.) Proceedings of the second International Conference on Superconducting Quantum Devices, Springer-Verlag, Berlin, pp. 423–443.

    Google Scholar 

  157. Kazami, K., Takada, Y., Fujimoto, S., Yoshida, T., Ogata, H. and Kado, H. (1994) A Drungtype magnetometer mounted on a GM cryocooler, Superconductor Science und Technology 7, 256–259.

    Google Scholar 

  158. Kazami, K., Takada, Y., Yoshida, T., Ogata, H. and Kado, H. (1995) Cooling of SQUIDs using a Gifford-McMahon cryocooler containing magnetic regenerative material to measure biomagnetism, Cryogenics 35 143–148.

    Google Scholar 

  159. Kang, Y.-M., Sata, K.-I., Yoshida, T. and Yoshii, K. (1997) A cryocooled 61-channel MEG system, in H. Koch and S. Knappe (eds.), Extended abstracts of 661 Intematonal Superconductive Electronics Conference, Berlin, 25–28 June 1997, PTB Braunschweig, pp. 309–311.

    Google Scholar 

  160. Ross Jr., R.G., Johnson, D.L. and Kotsubo, V. (1992) Vibration characterization and control of miniature Stirling-cycle cryocoolers for space application, in R.W. Fast (ed.), Advances in Cryogenic Engineering 37, Plenum Press, New York, pp. 1019–1027.

    Google Scholar 

  161. Aubrun, J-N., Clappier, R.R., Lorell, K.R., Nast, T.C. and Reshatoff Jr., P.J. (1992) A high-performance force cancellation control system for linear split-cycle Stirling cryocoolers, in R.W. Fast (ed.), Advances in Cryogenic Engineering 37, Plenum Press, New York, pp. 1029–1036.

    Google Scholar 

  162. Glaser, R.J., Ross Jr., R.G. and Johnson, D.L. (1993) Cryocooler tip motion suppression using active control of piezoelectric actuators, in Proceedings 7`h International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 1086–1097.

    Google Scholar 

  163. Boyle, R., Connors, F., Marketon, J., Arillo V., James, E. and Fink, R. (1993) Non-real time, feed forward vibration control system development und test results, in Proceedings 7th International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 805–819.

    Google Scholar 

  164. Wu, Y.A. (1994) Active vibration control algorithm for cryocooler, in P. Kittel (ed.), Advances in Cryogenic Engineering 39, Plenum Press, New York, pp. 1271–1280.

    Google Scholar 

  165. Collins, S.A., Paduano, J.D. and Von Flotow, A.H. (1995) Active multi-axis vibration cancellation for split-Stirling cryocoolers, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 437–448.

    Google Scholar 

  166. Mon, G.R., Smedley, G.T., Johnson, D.L. and Ross Jr., R.G. (1995) Vibration characteristics of Stirling cycle cryocoolers for space application, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 197–208.

    Google Scholar 

  167. Kieffer, M., Wu, A. and Champion S. (1997) Summary and results of Hughes improved standard spacecraft cryocooler vibration suppression experiment, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 705–710.

    Google Scholar 

  168. James, E.F., Banks, S. and Castles, S. (1997) Investigation into vibration issues of Sunpower M77 cryocoolers, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 697704.

    Google Scholar 

  169. Cook, E.L., Hackett, J., Drummond, J.R., Mand, G.S. and Burriesci, L. (1997) MOPITT Strling cycle cooler vibration performance results, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 711–718.

    Google Scholar 

  170. Verbeme, J.F.C., Bruins, P.C., Van den Bosch, P.J. and Ter Brake, H.J.M. (1995) Reduction of the vibration generated by Stirling cryocoolers used for cooling a high-Ta SQUID magnetometer, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 465474.

    Google Scholar 

  171. Rijpma, A.P., Verbeme, J.F.C., Witbreuk, E.H.R. and Ter Brake, H.J.M. (1997) Vibration reduction in a set-up of two split type Stirling cryocoolers, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 727–736.

    Google Scholar 

  172. Clappier, R.R. and Kline-Schoder (1994) Precision temperature control of Stirling cryocoolers, in P. Kittel (ed.), Advances in Cryogenic Engineering 39, Plenum Press, New York, pp. 1177–1184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ter Brake, H.J.M. (2000). Cryogenic Systems for Superconducting Devices. In: Weinstock, H. (eds) Applications of Superconductivity. NATO ASI Series, vol 365. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0752-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0752-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5377-0

  • Online ISBN: 978-94-017-0752-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics