Skip to main content

High Current Application of Superconductivity

Part II: Superconducting Magnets for Fusion

  • Chapter
Applications of Superconductivity

Part of the book series: NATO ASI Series ((NSSE,volume 365))

  • 637 Accesses

Abstract

Nuclear fusion is one of the major long-term options for mankind’s energy supply. Progress in the physics of fusion reactors is already well advanced, and the development of a first experimental reactor has been underway for several years. At present magnetic confinement of the hot plasma is considered as the most promising technology. Consequently, the use of superconducting magnets for generating the required high magnetic field in a large volume is imperative for economic reasons. Even for large prototype experiments currently under construction, one must use superconducting magnets for steady-state or quasi-steady-state operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komarek, P. (1995) Hochstromanwendung der Supraleitung, B.G. Teubner Verlag, Stuttgart.

    Google Scholar 

  2. Komarek, P; Baker, C.C.; Filatov, G.O.; Shimamoto, S. (1990) Magnetic Confinement, Nuclear Fusion, 30, No. 9, 1817–1862.

    Article  Google Scholar 

  3. File, J; et al. (1971) Large Superconducting Magnet Design for Fusion Reactors, IEEE Trans. on Nucl. Science 18, 277.

    Google Scholar 

  4. Sapper, J. (1995) Das supraleitende Magnetsystem für das Fusionsexperiment WENDELSTEIN 7-X, VDI-Berichte 1187, 233–247.

    Google Scholar 

  5. Komarek, P. (1988) Material for superconducting magnets, Journal ofNucl. Mat 155157, 207–217.

    Article  Google Scholar 

  6. Turck, B. (1996) Six years of operating experience with TORE SUPRA, the largest tokamak with superconducting coils, IEEE Trans. on Magn, 32, No. 4, 2264–2267.

    Article  Google Scholar 

  7. Satow, T.; et al. (1993) Present Status of Design and Manufacture of the Superconducting Magnets for the Large Helical Device, IEEE Trans. on Appl. Superconductivity, 3, No. 1, 365–368

    Google Scholar 

  8. Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G. (Editors) (1988) The IBA Large Coil Task–Development of superconducting toroidal field magnets for fusion power, Fusion Engineering and Design, 7, No. 1 and 2, 1–230.

    Google Scholar 

  9. Shimamoto, S; Okuno, K.; Ando, T; Tsuji, H. (1990) Development of Superconducting Pulsed Poloidal Coil in Japan, Cryogenics, 30 (Supplement), 23–30.

    Google Scholar 

  10. Koizumi, N.; et al. (1997) Ramp-rate limitation due to current imbalance in a large cable-in-conduit conductor consisting of chrome-plated strands, Cryogenics, 37, 441452.

    Google Scholar 

  11. Nakajima, H.; et al. (1994) Effects of Cyclic Pulsed Operation on the Coil Performance in the Nb3Sn Demo Poloidal Coil (DPC-EX), IEEE Trans. on Magn, 30, No. 4, 2535–2538.

    Google Scholar 

  12. Huguet, M. (1997) The ITER magnet system, Fusion Engineering and Design, 36, 2332.

    Article  Google Scholar 

  13. Specking, W.; et al. (1991) The effect of static and cyclic axial strain on I, of cable in conduit NET subcables, IEEE Trans. on Magn, 27, No. 2, 1825–1828

    Google Scholar 

  14. Komarek, P.; Salpietro, E. (1997) The test facility for the ITER TF model coil, Fusion Engineering and Design, in print.

    Google Scholar 

  15. Thome, R.J.; Czirr, J. B.; Schulz, J.H. (1986) Survey of Selected Magnet Failures and Accidents, Fusion Technology, 10, 1216–1222.

    Google Scholar 

  16. Toschi, R.; et al. (1993) NET predesign report, Fusion Engineering and Design, 21, 1358.

    Google Scholar 

  17. Kronhardt, H. (1993) Einfluß von Kurzschlüssen und Lichtbögen auf die Sicherheit von Magnetsystemen, KJK Bericht, 5096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komarek, P. (2000). High Current Application of Superconductivity. In: Weinstock, H. (eds) Applications of Superconductivity. NATO ASI Series, vol 365. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0752-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0752-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5377-0

  • Online ISBN: 978-94-017-0752-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics