Skip to main content

Suppression of Free Radical-Induced Mutation of Animal Cell Genes by Food Factors

  • Conference paper
Animal Cell Technology: Basic & Applied Aspects

Part of the book series: Animal Cell Technology: Basic & Applied Aspects ((ANICELLTECH,volume 13))

  • 423 Accesses

Abstract

Reactive oxygen and nitrogen species (RONS), including nitric oxide (NO) and superoxide (O2 ), are known to be important signal transduction mediators regulating gene expression, cell differentiation, immune activation, and apoptosis (1). On the other hand, they are potentially toxic to biological systems and chronic production of RONS, in fact, plays causative roles in the onset of a variety of diseases and aging (2). While numerous studies have demonstrated the mutagenicity of RONS (3,4), in most of these experiments target cells or isolated DNA were exposed to chemically generated RONS. The permeation rate and half-life of RONS in vivo are considered to be virtually different from those observed in experiments with the use of RNOS-producing chemicals. Therefore, a model system that can be employed to demonstrate the mutagenic potential of biologically generated RONS needs to be established. In this regard, a co-culture experiment using RONS generating cells, instead of chemically synthesized RONS, may compensate for these insufficient in vitro conditions and thus possibly mimic biological environment in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suzuki, Y.J., Forman, H.J. and Sevanian, A. (1997) Oxidants as stimulators of signal transduction. Free Radio. Biol Med., 22, 269–285.

    Article  CAS  Google Scholar 

  2. Halliwell, B. and Gutteridge, J.M.C. (1990) The role of free radicals and catalytic metal ions in human diseases: an overview. Methods Enzymol., 186, 1–68.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer, R.M., Ferrige, A.G. and Moncada, S. (1984) Nitric oxide release accounts for the biological activity of endothelial-derived relaxing factor. Nature, 327, 524–526.

    Article  Google Scholar 

  4. Radi, R., Beckmann, J.S., Bush, KM and Freeman, B.A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem., 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  5. Furchgott. R.F. and Vanhoutte, P.M. (1989) Endothelium-derived relaxing and contracting factors. FASEB J., 3, 2007–2018.

    Google Scholar 

  6. Pedruzzi, E., Fay, M., Elbim, C., Gaudry, M. and Gougerot-Pocidalo, M.A. (2002) Differentiation of PLB- 985 myeloid cells into mature neutrophils, shown by degranulation of terminally differentiated compartments in response to N-formyl peptide and priming of superoxide anion production by granulocyte-macrophage colony-stimulating factor. Br. J. Haematol, 117, 719–726.

    Article  PubMed  CAS  Google Scholar 

  7. Szabo, C. and Ohshima, H. (1997) DNA damage induced by peroxynitrite: Subsequent biological effects. Nitric Oxide, 1, 373–385.

    Article  PubMed  CAS  Google Scholar 

  8. Hsie, A.W., Xu, Z., Yu, Y., Sognier, M.A., Hrelia, P. (1990) Molecular analysis of reactive oxygen species-induced mammalian gene mutation. Teratog. Carcinog. Mutagen., 10, 115–124.

    Article  PubMed  CAS  Google Scholar 

  9. Tindall, K.R., Stankowski, LF. Jr., Machanoff, R. and Hsie, A.W. (1986) Analysis of mutation in pSV2gpt-transformed CHO cells. Mutat. Res., 160, 121–131.

    Article  PubMed  CAS  Google Scholar 

  10. Ariza, M.E. and William, M.V. (1999) Lead and mercury mutagenesis: type of mutation dependent upon metal concentration. J:Biochem. Toxicol, 13, 107–112.

    Article  CAS  Google Scholar 

  11. Tindall, K.R. and Stankowski Jr., L.F. (1989) Molecular analysis of spontaneous mutations at the gpt locus in Chinese hamster ovary (AS52) cells. Mutat. Res., 220, 241–253.

    Article  PubMed  CAS  Google Scholar 

  12. Tindall, K.R., Stankowski Jr., LF., Machanoff, R. and Hsie A.W. (1984) Detection of deletion mutations in pS V2gpt-transformed cells. Mol. Cell Biol, 4, 1411–1415.

    PubMed  CAS  Google Scholar 

  13. Ariza, M.E., Obeiyszyn, A.S., Robertson, F.M. and Williams, M.V. (1996) Mutagenic potential of peripheral blood leukocytes: in vivo exposure to the carcinogen 7,12-dimethylbenz[a]anthracene, and the tumor promoter 12–0-tetradecanoylphorbol-13-acetate followed by in vitro co-culture with AS52 cells. Cancer Lett., 106, 9–16.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, H.-W., Murakami, A, Williams M.V., and Ohigashi, H. (2002) Mutagenicity of reactive oxygen and nitrogen species as detected by co-culture of activated inflammatory leukocytes and AS52 cells, Carcinogenesis,in press.

    Google Scholar 

  15. H.-W. Kim, A. Murakami, Y. Nakamura, and H. Ohigashi (2002) Screening of edible Japanese plants for suppressing effects on phorbol ester-induced superoxide generation in differentiated HL-60 cells and AS52 cells, Cancer Lett., 176, 7–16.

    Article  PubMed  CAS  Google Scholar 

  16. Murakami, A., Ohigashi, H. and Koshimizu, K. (1999) Chemoprevention: insights into biological mechanisms and promising food factors., Food Rev. Int., 15, 335–395.

    Article  CAS  Google Scholar 

  17. Driscoll, K.E., Deyo, L.C., Carter, J.M., Howard, B.W., Hassenbein, D.G. and Bertram, T.A. (1997) Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis, 18, 423–430.

    Article  PubMed  CAS  Google Scholar 

  18. Knaapen, A.M, Seiler, F, Schildderman, P.A.E.L., Nehls, P., Bruch, J., Schins, RPF. and Borm, P.J.A. (1999) Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic. Biol Med., 27. 234–240.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe, N., Miura, S., Zeki, S. and Ishii, H. (2001) Hepatocellular oxidative DNA injury induced by macrophage-derived nitric oxide. Free Radic. Biol Med., 30. 1019–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ohigashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Murakami, A., Kim, HW., Williams, M.V., Ohigashi, H. (2003). Suppression of Free Radical-Induced Mutation of Animal Cell Genes by Food Factors. In: Yagasaki, K., Miura, Y., Hatori, M., Nomura, Y. (eds) Animal Cell Technology: Basic & Applied Aspects. Animal Cell Technology: Basic & Applied Aspects, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0726-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0726-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6557-5

  • Online ISBN: 978-94-017-0726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics