Module Structures on the Hochschild and Cyclic Homology of Graded Rings

Part of the NATO ASI Series book series (ASIC, volume 407)


Module structures are defined on Hochschild homology, cyclic homology and Kahler differentials for graded algebras over a commutative ring k. The ring of operators is the big Witt ring of R, or a larger ring constructed in this paper, the ring Car f of finite Cartier operators. Elementary properties of the ring Car f and its modules are also discussed.


Module Structure Commutative Ring Polynomial Ring Short Exact Sequence Mixed Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AT]
    M. Atiyah and D. Tall, Group representations, A-rings and the J-homomorphism, Topology 8 (1969), 253–297.MathSciNetCrossRefGoogle Scholar
  2. [Bloch]
    S. Bloch, Algebraic K-theory and Crystalline Cohomology, Publ. Math. I.H.E.S. 47 (1978), 188–268.Google Scholar
  3. [Bloch2]
    S. Bloch, Some formulas pertaining to the K-theory of commutative group-schemes, J. Alg 53 (1978), 304–326.CrossRefGoogle Scholar
  4. [Bour]
    N. Bourbaki, Algèbra Commutative, Ch. 9, Masson, 1983.Google Scholar
  5. [CE]
    H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956Google Scholar
  6. [Cl]
    P. Cartier, Groups formels associés aux anneaux de Witt généralisés, C.R. Acad. Sci. Paris 265 (1967), 49–52.Google Scholar
  7. [C2]
    P. Cartier, Modules associés à un groupe formel commutatif. C. Urbes typiques, C.R. Acad. Sci. Paris 265 (1967), 129–132.Google Scholar
  8. [D]
    B. Dayton, The Picard group of a reduced G-algebra, JPAA 59 (1989), 237–253.MathSciNetzbMATHGoogle Scholar
  9. [DW]
    B. Dayton and C. Weibel, On the naturality of Pic, SK0 and SKI., in J.Jardine and V. Snaith (eds.), Algebraic K-theory: Connections with Geometry and Topology, pp.l-28, Kluwer Acad. Publishers, 1989.Google Scholar
  10. [DI]
    R.K. Dennis and K. Igusa, Hochshild Homology and the second obstruction for Pseudoisotopy, Lecture Notes in Math 966, pp.7–58, Springer -Verlag, 1982.Google Scholar
  11. [FT]
    B. Feigin and B. Tsygan, Additive K-theory, Lecture Notes in Math 1289, pp. 67–209, Springer Verlag, 1987.Google Scholar
  12. [GRW]
    S. Geller, L. Reid, and C.Weibel, The cyclic homology and K-theory of curves, J. reine angew. Math. 393 (1989), 39–90.MathSciNetzbMATHGoogle Scholar
  13. [Goodw]
    T. Goodwillie, Cyclic homology, derivations and the free loop space., Top. 24 (1985), 187–215.MathSciNetzbMATHGoogle Scholar
  14. [Grays]
    D. Grayson, Grothendieck rings and Witt vectors, Comm. Alg. 6 (1978), 249–255.zbMATHCrossRefGoogle Scholar
  15. [Haz]
    M. Hazewinkel, Three Lectures on Formal Groups, in Lie Algebras and related topics, CMS Conference Proceedings Vol. 5, pp. 51–67, AMS, 1986.Google Scholar
  16. [HKR]
    G. Hochschild, B. Konstant and A. Rosenberg, Differential forms on regular affine algebras, Trans. AMS 102 (1962), 383–408.zbMATHCrossRefGoogle Scholar
  17. [HK]
    D. Husemoller and C. Kassel, Cyclic Homology, to appear.Google Scholar
  18. [Igusa]
    K. Igusa, What happens to Hatcher and Wagoner’s etc., Lecture Notes in Math 1046, pp. 105–172, Springer Verlag, 1984.Google Scholar
  19. [K-CCM]
    C. Kassel, Cyclic Homology, Comodules, and Mixed complexes, J. Alg 107 (1987), 195–216.zbMATHCrossRefGoogle Scholar
  20. [K-CCB]
    C. Kassel, Caractère de Chern bivariant, K-theory 3 (1989), 367–400.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [K-LP]
    C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. reine angew Math. 408 (1990), 159–180.MathSciNetzbMATHGoogle Scholar
  22. [Kunz]
    E. Kunz, Kähler Differentials, Vieweg, 1986Google Scholar
  23. [LR]
    J. Labute and P. Russell, On K2 of truncated polynomial rings, JPAA 6 (1975), p. 239–251.MathSciNetzbMATHGoogle Scholar
  24. [Lang]
    S. Lang, Algebra, Addison-Wesley, 1965.Google Scholar
  25. [Laz]
    M. Lazard, Commutative Formal Groups, Lect. Notes in Math. 443, Springer-Verlag, 1975.Google Scholar
  26. [LQ]
    J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comm. Math. Rely. 59 (1984), 565–591.MathSciNetzbMATHGoogle Scholar
  27. [Mac]
    S. MacLane, Homology, Springer-Verlag, 1963.Google Scholar
  28. [Mats]
    H. Matsumura, Commutative Algebra, Benjamin, 1970Google Scholar
  29. [Rine]
    G. Rinehart, Differential forms on general commutative algebra, Trans. AMS 108 (1963), 195–222.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [Rob]
    L. Roberts, Kähler differentials and 11C1 of certain graded K-algebras, in J. Jardine and V. Snaith (eds.), Algebraic K-theory: Connections with Geometry and Topology, pp. 389–424, Kluwer Acad. Publ. 1989.CrossRefGoogle Scholar
  31. [S-TP]
    J. Stienstra, On K2 and K3 of truncated polynomial rings, in Lect. Notes in Math. 854, pp. 409–455, Springer-Verlag, 1981.Google Scholar
  32. [S-0E]
    J. Stienstra, Operations in the higher K-theory of endomorphisme, CMS Conf. Proc., Vol 2 (part 2) (1982), 59–115.MathSciNetGoogle Scholar
  33. [SvdK]
    J. Stienstra and W. van der Kallen, The relative K2 of truncated polynomial rings, JPAA 34 (1984) 277–289.zbMATHGoogle Scholar
  34. [W-MVS]
    C.A. Weibel, Mayer-Vietoris sequences and module structures on NK*, in Lect. Notes. in Math. 966, pp. 466–493, Springer-Verlag, 1982.Google Scholar
  35. [W-MGR]
    C.A. Weibel, Module Stuctures on the K-theory of Graded Rings, J. Alg. 105 (1987), 465–483.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [W-LL]
    C. Weibel, Appendix to Kähler differentials and HC 1 of certain graded K-algebras by Leslie G. Roberts in J. Jardine and V. Snaith (eds.), Algebraic K-theory: Connections with Geometry and Topology, pp. 389–424, Kluwer Acad. Publ. 1989.Google Scholar
  37. [WG]
    C. Weibel and S. Geller, Étale descent for Hochschild and Cyclic homology, Comm. Math. Heiv. 66 (1991), 368–388.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern Illinois UniversityChicagoUSA
  2. 2.Mathematics DepartmentRutgers UniversityNew BrunswickUSA

Personalised recommendations