Advertisement

Étale Chern Classes at the Prime 2

Chapter
Part of the NATO ASI Series book series (ASIC, volume 407)

Abstract

Let A be a commutative ring and q a power of 2. We investigate the étale Chern classes
$${c_{ik}}:{K_n}\left( {A;{\Bbb Z}/q} \right) \to H_{et}^k\left( {A;\mu _q^{ \otimes i}} \right)$$
which are defined whenever i ≥ 1 and n + k = 2i. These are group homomorphisms except when n = 2 and q is even. The usual product formula for c ik ({a,b}) remains valid, except when q = 2 and i ≥ 3, when there is a correction term.

Keywords

Direct Summand Commutative Ring Chern Class Number Field Group Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AT]
    S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71 - 115.MathSciNetzbMATHGoogle Scholar
  2. [AV]
    M. Artin and J.-L. Verdier, Seminar on étale cohomology of number fields,AMS Summer Institute on Algebraic Geometry (1964).Google Scholar
  3. [Br]
    W. Browder, Algebraic K-theory with coefficients Z/p, Lecture Notes in Math. No. 657, Springer—Verlag, 1978.Google Scholar
  4. [CC]
    J. Milnor and J. Stasheff, Characteristic classes, Annals of Math Study 76, Princeton Univ. Press, 1974.Google Scholar
  5. [DF]
    W. Dwyer and E. Friedlander, Algebraic and Etale K-theory, Trans. AMS 292 (1985), 247 - 280.MathSciNetzbMATHGoogle Scholar
  6. [DFM]
    W. Dwyer, E. Friedlander and S. Mitchell, The generalized Burnside ring and the K-theory of a ring with roots of unity, K-theory 6 (1992), 285 - 300.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [G]
    A. Grothendieck, Classes de Chern et représentations linéaires des groupes discretes, in Dix exposés sur le cohomologie des schémas, Masson and North—Holland, 1968.Google Scholar
  8. [Gab]
    O. Gabber, K-theory of henselian local rings and henselian pairs, AMS Contemp. Math. 126 (1992), 59 - 70.Google Scholar
  9. [Gi]
    H. Gillet, Riemann—Roch theorems for higher algebraic K-theory, Advances Math. 40 (1981), 203 - 289.Google Scholar
  10. [HS]
    B. Harris and G. Segal, K1 groups of rings of algebraic integers, Annals of Math. 101 (1975), 20 - 33.zbMATHCrossRefGoogle Scholar
  11. [Igusa]
    K. Igusa, What happens to Hatcher and Wagoner’s formula for rsC(M) when the first Postnikov invariant of M is nontrivial, Lecture Notes in Math. No. 1046, Springer-Verlag, 1984.Google Scholar
  12. [K]
    M. Kolster, On torsion in K2 of fields, J. Pure Appl. Alg. 74 (1991), 257 - 273.Google Scholar
  13. [L]
    M. Levine, The indecomposable K3 of fields, Ann. scient. Ec. Norm. Sup. (Paris) t. 22 (1989), 255 - 344.Google Scholar
  14. [Licht]
    S. Lichtenbaum, On the values of zeta and L-functions: I, Annals Math. 96 (1972), 338-360. [Milne] J. Milne, Étale Cohomology, Princeton Univ. Press, Princeton, 1980.Google Scholar
  15. [MS]
    A. Merkurjev and A. Suslin, The group K3 for a field, Izv. Akad. Nauk CCCP 54 (1990); (= Math. USSR Izvestiya 36 (1991), 541 - 565 ).MathSciNetCrossRefGoogle Scholar
  16. [MS2]
    A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk CCCP 46 (1982); (= Math. USSR Izvestiya 21 (1983), 307 - 340 ).CrossRefGoogle Scholar
  17. [N]
    J. Neisendorfer, Primary homotopy theory, Memoirs AMS 232 (1980).Google Scholar
  18. [PW]
    C. Pedrini and C. Weibel, Invariants of real curves,Rendiconte Mat. Sem. Torino (to appear).Google Scholar
  19. [Q]
    D. Quillen, Letter from Quillen to Milnor on Im(riO J r7 — K;9G), Lecture Notes in Math. No.551, Springer—Verlag, 1976.Google Scholar
  20. [RRR]
    A. Grothendieck, Classes de Faisceaux et Théorème de Riemann-Roch, (SGA6, exposé 0), Lecture Notes in Math. No. 225, Springer—Verlag, 1971.Google Scholar
  21. [RW]
    L. Roberts and C. Weibel, K2 and K3 of the circle, J. Pure Applied Algebra 23 (1982), 67 - 95.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [S]
    C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251 - 295.zbMATHGoogle Scholar
  23. [S2]
    C. Soulé, Groupes de Chow et K-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), 317 - 345.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [S-CG]
    J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. No. 5, Springer—Verlag, 1964.Google Scholar
  25. [Sh]
    V. Shekhtman, Algebraic K-theory and characteristic classes, Uspekhi Mat. Nauk 33 (1978), 239-240; (= Russian Math. Surveys 33 (1978), 259 - 260 ).zbMATHCrossRefGoogle Scholar
  26. [Sherm] C. Sherman, The corrected version of Soule’s proof of SK„(A) = 0, preprint, 1983. [Susl] A. Suslin, On the K-theory of local fields, J. Pure Applied Algebra 34 (1984), 301-318. [Sus2]
    A. Suslin, Torsion in K2 fields, K-theory 1 (1987), 5 - 29.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [Tate]
    J. Tate, Duality Theorems in Galois Cohomology over number fields, Proc. 1962 Intern. Congress Math., Stockholm, 1963, pp. 288 - 295.Google Scholar
  28. [T342]
    J. Tate, Letter from Tate to Iwasawa on a relation between K2 and Galois cohomology, Lecture Notes in Math. No. 342, Springer—Verlag, 1973.Google Scholar
  29. [Wp]
    C. Weibel, Mayer- Vietoris sequences and mod p K-theory, Lecture Notes in Math. No. 966, Springer—Verlag, 1983.Google Scholar
  30. [Wiles]
    A.Wiles, The Iwasawa conjecture for totally real fields,Annals Math. 131 (1990), 493-540.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations